named after K.I.SATBAYEV»



**Institute** <u>of Energy and Mechanical Engineering</u> **Department** <u>of Power Engineering</u>

#### EDUCATIONAL PROGRAM

6B07101 - «Power Engineering»

Code and classification of the field of education: **6B07 Engineering**, **manufacturing and construction industries** Code and classification of training areas: **6B071 Engineering and Engineering** Group of educational programs: **B062 Electrical Engineering and Power Engineering** NRK level: **level 6** 

ORC level: **level 6** Duration of study: **4 years** Volume of credits: **240 ECTS** 

Almaty 202<u>4</u>

Educational program <u>6B07101-«Power engineering»</u> was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes # <u>12</u> dated «<u>22</u>» 04 20<u>24</u>.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes # 06 dated «19» 04 2024.

Educational program 6B07101-«Power engineering»

was developed by Academic committee based on direction «Engineering and Engineering»

| Full name                | Academic degree/<br>academic title               | Post                                                                                                                     | Place of work Signature                                                                                                       |        |  |  |  |
|--------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| Chairman of the          | Academic Committee:                              |                                                                                                                          |                                                                                                                               |        |  |  |  |
| Yelemessov<br>Kassym     | Candidate of<br>Technical Sciences,<br>Professor | Director of the<br>Institute of<br>Energy and<br>Mechanical<br>Engineering –<br>Chairman of the<br>Academic<br>Committee | Kazakh National<br>Research<br>Technical<br>University named<br>after K.I.Satpayev,<br>NCJS, mobile<br>phone:<br>+77056011116 | bother |  |  |  |
| Teaching staff:          |                                                  |                                                                                                                          |                                                                                                                               |        |  |  |  |
| Sarsenbayev<br>Yerlan    | Doctor of<br>Philosophy PhD                      | Head of the<br>Department,<br>Associate<br>Professor                                                                     | Kazakh National<br>Research<br>Technical<br>University named<br>after K.I.Satpayev,<br>NCJS, mobile<br>phone:<br>+77053157262 | 0      |  |  |  |
| Hidolda Yerkin           | Candidate of<br>Technical Sciences               | Associate<br>Professor                                                                                                   | Kazakh National<br>Research<br>Technical<br>University named<br>after K.I.Satpayev,<br>NCJS, mobile<br>phone:<br>+77021120211 |        |  |  |  |
| <b>Employers:</b>        |                                                  |                                                                                                                          |                                                                                                                               | See    |  |  |  |
| Abdikalykov<br>Galymzhan |                                                  | General manager                                                                                                          | Lighting<br>Technologies<br>Kazakhstan LLP,<br>mobile phone:<br>+77012252638                                                  | Hund   |  |  |  |

| Students:  |                              |                                                                                                                               |
|------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Danko Igor | 2nd year doctoral<br>student | Kazakh National<br>Research<br>Technical<br>University named<br>after K.I.Satpayev,<br>NCJS, mobile<br>phone:<br>+77053184203 |

#### **Table of contents**

- 1. Description of the educational program
- 2. The purpose and objectives of the educational program
- 3. Requirements for evaluating the learning outcomes of an educational program
- 4. Passport of the educational program
- 4.1. General information
- 4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines
  - 5. Curriculum of the educational program

#### **1. Description of the educational program**

The educational program is designed to train personnel for work in production workshops and engineering departments of thermal and nuclear power plants, industrial and heating boilers and in the energy, Metallurgical, Mining, Oil and gas and TSHK industries, as well as in production laboratories, energy and environmental expertise, environmental, energy, housing and communal services.

The direction of the specialty and specialization program includes engineering and engineering business.

In case of successful completion of the full course of undergraduate training, the graduate is awarded the academic degree "Bachelor of engineering and technology in the field of Electrical Engineering and energy".

In the educational program, the volume of Mathematical, Natural-Scientific, basic and language disciplines was increased the educational program maintained the established deep training in Mathematical, Natural Sciences, Basic and language disciplines.

The main subjects to be added can be divided into four groups: thermal power disciplines, electric power disciplines, alternative energy disciplines and laboratory workshop on the application of modern technologies. As a result, an educational program with innovative and practical content and aimed at implementing the Digital Kazakhstan program was obtained.

The educational program provides for the study of the following innovative disciplines:

- laboratory practice on modern industrial technologies in the Electric Power Industry (1, 2, 3);

- energy audit and energy saving at enterprises;

- renewable energy;

- modeling of energy systems;

- calculation and design of power supply systems;

- calculation and design of electric power units and systems;

- calculation and design of heat exchange equipment;

- calculation and design of an automated electric drive.

In the process of mastering the educational program, a bachelor of engineering and technology in the field of thermal power engineering must have the following key competencies.

A bachelor should have the following concepts:

- at modern heat and energy facilities, independent power sources and renewable energy facilities, in promising areas of energy development;

- about modern approaches in the calculation and design of energy systems, as well as the use of software for the management and evaluation of energy systems;

- on modern elements and installations of power systems (devices, apparatuses, conductors, equipment, motors, microprocessors, etc.).

must know:

- theoretical and experimental research methods in order to create new

promising areas in the field of Electrical Engineering and energy;

- principles of operation, technical characteristics and design features of the developed and used energy sources;

- Fundamentals of design, installation and operation of Electrical and thermal installations of the energy industry, methodological and regulatory materials;

to know:

- development of principles of organization and design of energy enterprises;

- use of application package for design, modeling and automation of energy systems;

must have skills:

- formation of basic technical and economic requirements for the designed energy systems;

- Organization of operation, installation and commissioning of Electrical and thermal equipment;

- development and design of a modern element and technical base of power systems and individual devices.

During the training, it is envisaged to undergo industrial practice in the following institutions: NC KEGOC, JSC ACC, JSC Ales, LLP Almaty heating systems, JSC VKREK, JSC TATEK, JSC Ontustik Zharyk Transit, JSC Kazatomprom, LLP Kazzinc, Karachaganak Petroleum Operating, etc.

#### 2. Purpose and objectives of educational program

The purpose of EP: The purpose of the educational program is to train students in general education, basic and specialized disciplines with the achievement of relevant competencies having professional knowledge in the design, installation, operation and repair of equipment of basic electrical and thermal installations for energy systems, sources of energy supply of industrial enterprises and settlements, training of bachelors who have an understanding of the classical and new directions of modern energy and environmental technologies and are able to apply the acquired knowledge in scientific, practical and production activities.

**Tasks of EP**: theoretical and practical training of highly qualified Bachelors of Electrical Engineering and energy, capable of performing the tasks of the entire complex of engineering problems of computing and equipping power supply systems with the use of modern computing equipment and the introduction of new technologies in design.

#### 3. Requirements for the evaluation of learning outcomes of the educational program

Admission to the university is carried out according to the applications of an applicant who has completed secondary, secondary special education in full on a

competitive basis in accordance with the points of the certificate issued according to the results of the unified national testing with a minimum score of at least 65 points.

Special requirements for admission to the program apply to graduates of 12 summer schools, colleges, applied bachelor's degree programs, niches, etc. Such applicants must pass diagnostic testing in English, mathematics, physics and special disciplines.

Rules for credit transfer for accelerated (reduced) education based on 12year secondary, secondary technical and higher education

| Code                        | Competence type                          | Description                                                                                                                                                                                                                                                                                                                                                                                 | Competence result                                                                                                                                                                                                                                                                                             | Responsible                                                         |
|-----------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                             |                                          | Shared                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                     |
|                             |                                          | raining with possible additional, o                                                                                                                                                                                                                                                                                                                                                         | lepending on the level of knowle                                                                                                                                                                                                                                                                              | edge)                                                               |
| G1 Communication            |                                          | <ul> <li>Fugitive monolingual<br/>oral, written and<br/>communication skills</li> <li>The ability not to<br/>communi-cate fluently with a<br/>second language</li> <li>The ability to use<br/>communi-cative<br/>communication in different<br/>situations</li> <li>There are basics to<br/>acade-mic writing in their<br/>native language</li> <li>Diagnostic language<br/>test</li> </ul> | Full 4-year study with a<br>minimum of 240 academic<br>loans (of which 120 contact<br>classroom academic credits)<br>with a possible re-recording<br>of loans in the second<br>language where students<br>have an advanced level. The<br>level of language is<br>determined by passing the<br>diagnostic test | Department of<br>Kazakh and<br>Russian,<br>Department of<br>English |
| G2 Mathematical<br>Literacy |                                          | <ul> <li>Basic mathematical<br/>thinking at the communication<br/>level</li> <li>the ability to solve<br/>situational problems on the<br/>basis of the mathematical<br/>apparatus of algebra and<br/>began mathematical analysis</li> <li>Diagnostic test for<br/>mathe-matical literacy in<br/>algebra</li> </ul>                                                                          | Full 4-year study with a<br>minimum of 240 academic<br>loans (of which 120 are<br>contact auditary academic<br>loans). With a positive test<br>of diagnostic test, the level<br>of mathematics 1, the<br>negative - the level of<br>algebra and the beginning of<br>the analysis                              | Mathematics<br>Department                                           |
| G3                          | Basic literacy in<br>science disciplines | <ul> <li>A basic understanding<br/>of the scientific picture of the<br/>world with an understanding<br/>of the basic laws of science</li> <li>Understanding basic<br/>hypotheses, laws, methods,<br/>drawing conclusions and<br/>assessing errors</li> </ul>                                                                                                                                | Full 4-year study with a<br>minimum of 240 academic<br>loans (of which 120 are<br>contact auditary academic<br>loans). With a positive test<br>of diagnostic test level<br>Physics 1, General<br>Chemistry, at negative - the<br>level of the Beginning of<br>Physics and basic basics of<br>chemistry        | Departments in<br>the fields of<br>natural sciences                 |

(includes reduced tuition by re-counting credits depending on the level of competence knowledge for graduates of

|     | 12-year schoo                                                                                      | ls, colleges, universities, includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g humanitarian and economic a                                                                                                                          | reas)                                               |
|-----|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| S1  | Communication                                                                                      | <ul> <li>Fugitive bilingual oral,<br/>written and communication<br/>skills</li> <li>The ability not to<br/>communi-cate fluently with a<br/>third language</li> <li>writing skills of<br/>different styles and genres</li> <li>skills of deep<br/>understanding and<br/>interpretation of one's own<br/>work of a certain level of<br/>complexity (essay)</li> <li>basic aesthetic and<br/>theore-tical literacy as a<br/>condition of full perception,<br/>interpretation of the original<br/>text</li> </ul>                                   | Full re-repayment of credits<br>by language (Kazakh and<br>Russian)                                                                                    | Department of<br>Kazakh and<br>Russian              |
| S2  | Mathematical<br>Literacy                                                                           | <ul> <li>Special mathematical<br/>thin-king using induction and<br/>deduction, generalization and<br/>specification, analysis and<br/>synthesis, classification and<br/>systematization, abstraction<br/>and analogy         <ul> <li>The ability to<br/>formulate, substantiate and<br/>prove positions</li> <li>Application of<br/>common mathematical<br/>concepts, formulas and<br/>extended spatial perception for<br/>mathematical tasks</li> <li>Full understanding of<br/>the basics of mathematical<br/>analysis</li> </ul> </li> </ul> | Re-credit for The Discipline<br>of Mathematics (Calculus) I                                                                                            | Mathematics<br>Department                           |
| \$3 | Special literacy in<br>science disciplines<br>(Physics,<br>Chemistry,<br>Biology and<br>Geography) | <ul> <li>A broad scientific<br/>percep-tion of the world that<br/>suggests an understanding of<br/>natural phenomena</li> <li>Critical perception to<br/>understand the phenomena of<br/>the world around</li> <li>cognitive ability to<br/>formulate a scientific<br/>understanding of the forms of<br/>existence of matter, its<br/>interaction in nature</li> </ul>                                                                                                                                                                           | Re-credits for Physics I,<br>General Chemistry, General<br>Biology, Introduction to<br>Geology, Introduction to<br>Geodesy; Training practice,<br>etc. | Departments in<br>the fields of<br>natural sciences |
| S4  | English language                                                                                   | <ul> <li>Readiness for further<br/>self-learning in English in<br/>various fields</li> <li>Ready to gain<br/>experience in design and<br/>research using English</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      | Refilort English credits<br>above academic to<br>professional level (up to 15<br>credits)                                                              | Department of<br>English                            |
| S5  | Computer skills                                                                                    | - Basic programming skills in one modern language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reset Credits on Discipline<br>Introduction to Information                                                                                             | Department of<br>Software                           |

|            |                  | - Use software and                                | and Communication              | Engineering       |
|------------|------------------|---------------------------------------------------|--------------------------------|-------------------|
|            |                  | applications to teach different                   | Technologies, Information      | Lingineering      |
|            |                  | disciplines                                       | and Communication              |                   |
|            |                  |                                                   | Technologies                   |                   |
|            |                  | - Understanding and                               | Re-credit for Kazakhstan's     | Department of     |
| <b>S</b> 6 | Social and       | understanding the                                 | Modern History (excluding      | Public Discipline |
|            | humanitarian     | responsibility of every citizen                   | state exam)                    |                   |
|            | competencies and | for the development of the                        |                                |                   |
|            | behaviour        | country and the world                             |                                |                   |
|            |                  | - The ability to discuss                          |                                |                   |
|            |                  | ethical and moral aspects in                      |                                |                   |
|            |                  | society, culture and science                      |                                | -                 |
|            |                  | - Critical understanding                          | Re-credit credits for          |                   |
|            |                  | and the ability to debate on                      | philosophy and other           |                   |
|            |                  | modern scientific hypotheses                      | humanities                     |                   |
| DDO        |                  | and theories                                      |                                |                   |
| PRO        |                  | es reduced education by re-countir                |                                | l of knowledge on |
| P1         | Professional     | mpetences for college graduates,                  | Re-credits for basic           | Releasing chair   |
| F I        | competencies     | - Critical perception and a deep understanding of | professional disciplines,      | Releasing chair   |
|            | competencies     | professional competencies at                      | including introduction to      |                   |
|            |                  | level 5 or 6                                      | specialty, engineering ethics, |                   |
|            |                  | - The ability to discuss                          | robotic technology,            |                   |
|            |                  | and debate professional issues                    | automation technology,         |                   |
|            |                  | within the framework of the                       | theoretical basics of          |                   |
|            |                  | mastered program                                  | electrical engineering,        |                   |
|            |                  |                                                   | technological measurements     |                   |
|            |                  |                                                   | and instruments,               |                   |
|            |                  |                                                   | mathematical basics of         |                   |
|            |                  |                                                   | control theory, electronic     |                   |
|            |                  |                                                   | automation devices.            |                   |
| P2         | General          | - Basic general                                   | Re-credit for general          | Releasing chair   |
|            | Engineering      | engineering skills and                            | engineering disciplines        |                   |
|            | Competencies     | knowledge, the ability to solve                   | (engineering graphics,         |                   |
|            |                  | general engineering problems                      | outline geometry, electrical   |                   |
|            |                  | and problems                                      | engineering basics,            |                   |
|            |                  | - be able to use                                  | microelectronics basics.)      |                   |
|            |                  | application packages to                           |                                |                   |
|            |                  | process experimental data,                        |                                |                   |
|            |                  | solve algebraic and differential equation systems |                                |                   |
| P3         | Engineering and  | - Basic skills in using                           | Re-credit for computer         | Releasing chair   |
| 15         | computer         | computer programs and                             | graphics discipline,           | ivercasing chan   |
|            | competencies     | software systems to solve                         | computer modeling and          |                   |
|            | competencies     | general engineering problems                      | programming in the MatLab      |                   |
|            |                  | British engineering problems                      | environment.                   |                   |
| P4         | Socio-economic   | - Critical understanding                          | Re-transfer credits for socio- | Releasing chair   |
| -          | competences      | and cognitive ability to reason                   | humanitarian and technical     |                   |
|            | <b>1</b>         | on contemporary social and                        | and economic disciplines in    |                   |
|            |                  | economic issues                                   | the set-off of the electorate  |                   |
|            |                  | - A basic understanding                           | cycle                          |                   |
|            |                  | of the economic assessment of                     |                                |                   |
|            |                  | research sites and the                            |                                |                   |
|            |                  | profitability of projects.                        |                                |                   |

The university may refuse to re-borrow credits if the low diagnostic level is

confirmed or the final grades were lower than A and B.

#### 4. Passport of the educational program

| № | Field name Note                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|---|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1 | Code and classification of the field of         | 6B07 Engineering, manufacturing and construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|   | education                                       | industries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 2 | Code and classification of training             | 6B071 Engineering and Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|   | areas                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|   | Group of educational programs                   | B062 Electrical Engineering and Power engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|   | Name of the educational program                 | Power Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 5 | Brief description of the educational<br>program | calculation and design of energy systems in promising<br>areas of energy development, as well as the use of<br>software for managing and evaluating energy systems;<br>formation of basic technical and economic<br>requirements for projected energy systems on modern<br>elements and installations of power systems; use,<br>installation and sale of electrical and thermal<br>engineering equipment organization of<br>commissioning; It is intended for training personnel<br>for the development and design of modern element<br>and technical base of power systems and individual<br>devices.<br>The specialization and specialization program area<br>includes engineering and engineering business.<br>In case of successful completion of the full<br>bachelor's degree course, the graduate is awarded the<br>academic degree "Bachelor of Engineering and<br>energy". The educational program has increased the<br>volume of mathematical, natural science, basic and<br>language disciplines. It can be divided into four<br>groups: disciplines of thermal power engineering,<br>disciplines of electric power engineering, disciplines<br>of alternative energy and a laboratory seminar on the<br>application of modern technologies. As a result, an |  |  |  |  |
|   |                                                 | educational program with innovative and practical content was obtained and aimed at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|   |                                                 | implementation of the Digital Kazakhstan program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 6 | Purpose of the EP                               | The purpose of the educational program is to teach<br>students general education, basic and specialized<br>disciplines with the achievement of appropriate<br>competencies. Theoretical and practical training of<br>highly qualified bachelors of electrical engineering<br>and power engineering, capable of performing tasks<br>of the entire complex of engineering problems of<br>power supply using modern computer technology and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

#### **4.1. General information**

|                                   | the introduction of new technologies in design, having professional knowledge in the design,     |
|-----------------------------------|--------------------------------------------------------------------------------------------------|
|                                   | installation, operation and repair of equipment of                                               |
|                                   | power systems, sources of energy supply of industrial                                            |
|                                   | enterprises and settlements, bachelor's degree                                                   |
|                                   | training, having an understanding of the classical and                                           |
|                                   | new directions of modern energy and environmental                                                |
|                                   | technologies and able to apply the knowledge gained                                              |
|                                   | in scientific, practical and industrial activities.                                              |
| 7 Type of EP                      | New                                                                                              |
| 8 The level of the NRK            | level 6                                                                                          |
| 9 ORC Level                       | Level 6                                                                                          |
| 10 Distinctive features of the EP | No                                                                                               |
| 11 List of competencies of the    | A - knowledge and understanding:                                                                 |
| educational program:              | A1 - methods of building electrical, technological and                                           |
|                                   | functional schemes for the design of Power                                                       |
|                                   | Engineering systems;                                                                             |
|                                   | A2 - current trends in the development of technical                                              |
|                                   | and technological systems of Power Engineering facilities;                                       |
|                                   | A3 - standards, methodical and regulatory materials                                              |
|                                   | accompanying the operation, installation and                                                     |
|                                   | installation of thermal power and Electric Power                                                 |
|                                   | Engineering facilities.                                                                          |
|                                   | B - applying knowledge and understanding:<br>B1 - independent work and offer various options for |
|                                   | solving professional problems using theoretical and practical knowledge;                         |
|                                   | B2 - to organize installation, installation and operation                                        |
|                                   | of Electric Power Engineering and thermal systems;                                               |
|                                   | B3 - to organize the collection, storage and                                                     |
|                                   | processing of information used in the field of                                                   |
|                                   | professional activity.                                                                           |
|                                   | C - the formation of judgments:                                                                  |
|                                   | C1 - about modern Power Engineering industry                                                     |
|                                   | facilities and process management systems;                                                       |
|                                   | C2 - on the application of modern autonomous Power                                               |
|                                   | Engineering systems of different categories of                                                   |
|                                   | consumer approaches;                                                                             |
|                                   | C3 - about modern technical devices and                                                          |
|                                   | technological equipment of Power Engineering                                                     |
|                                   | facilities (devices, devices, conductors, equipment,                                             |
|                                   | executive mechanisms, microprocessors, etc.).                                                    |
|                                   | D - personal abilities:                                                                          |
|                                   | D1 - to be an Power Engineering engineer, electrical                                             |
|                                   | engineer of the production division of the operation of                                          |
|                                   | Power Engineering systems;                                                                       |
|                                   | D2 - to be a specialist in the maintenance of electrical                                         |
|                                   | and thermal networks, and systems;                                                               |

| D3 - to be an engineer of the production unit for the repair of thermal and electrical installations;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D4 - to be able to organize work on setting up Power<br>Engineering and electromechanical plants of industrial<br>enterprises.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Competences at the end of training</li> <li>B - Basic knowledge, skills andskills:</li> <li>B1 is capable of philosophical analysis of social phenomena, personality behavior and other phenomena. I am ready to conduct a philosophical assessment of social phenomena;</li> <li>B2 - to know and apply in practice the basics of engineering professional ethics;</li> <li>B3 - to be able to analyze the current problems of the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul><li>modern history of Kazakhstan.</li><li>P - Professional competencies, including in</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| accordance with the requirements of industry<br>professionalstandards:<br>P1 is a wide range of theoretical and practical<br>knowledge in the professional field;<br>P2 - is able to analyze and solve problems on the<br>theory of electrical circuits and heat technology;<br>P3 - is able to analyze thermal, electrical and<br>installation schemes of technological production. I am<br>ready to install, set up and operate thermal and<br>electrical installations, and systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>O - Human, social and ethicalcompetences:</li> <li>O1 - is able to freely use english as a means of business communication, a source of new knowledge in the field of electrical engineering and Power Engineering. I am ready to use the English language in the professional activities in the field of Electric Power Engineering and heat Power Engineering;</li> <li>O2 - is able to freely master the Kazakh (Russian) language as a means of business communication, a source of new knowledge in the field of electrical engineering and Power Engineering. I am ready to use the Kazakh (Russian) language in professional activities in the field of Electric Power Engineering;</li> <li>O3 - to know and apply in work and life the basics of applied ethics and ethics of business communication;</li> <li>O4 - to know and apply the basic concepts of professional ethics;</li> <li>O5 - to know and apply in practice the "code of conduct of angineer";</li> </ul> |
| conduct of engineer";<br>O6 - to know and solve the problems of human<br>influence on the environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|    |                          | C - Special and Management Competencies:<br>C1 - self-management and control of work and |
|----|--------------------------|------------------------------------------------------------------------------------------|
|    |                          | training processes within the framework of the                                           |
|    |                          | 0 1                                                                                      |
|    |                          | organization's strategy, policies and objectives,                                        |
|    |                          | discussion of the problem, reasoning of conclusions                                      |
|    |                          | and competent operation of information;                                                  |
|    |                          | C2 - in the field of organizational and management                                       |
|    |                          | activities: to be the head of the group of the division                                  |
|    |                          | for the operation, installation and repair of power                                      |
|    |                          | plants in various industries;                                                            |
|    |                          | C3 - in the field of experimental research: to be a                                      |
|    |                          | specialist in experimental research of thermal and                                       |
|    |                          | electric power facilities;                                                               |
|    |                          | C4 - in the field of research: to be an engineer of a                                    |
|    |                          | scientific laboratory for the research and development                                   |
|    |                          | of modern Power Engineering installations and                                            |
|    |                          | systems in various industries;                                                           |
|    |                          | C4 - in the field <i>of design:</i> to be an engineer in the                             |
|    |                          | development and design of electric power plants, and                                     |
|    |                          | systems in various industries                                                            |
| 12 | Learning outcomes of the | General standard requirements for graduation and                                         |
| 12 | educational program:     | awarding a bachelor's degree: mastering at least 240                                     |
|    |                          | academic credits of theoretical training and final                                       |
|    |                          | diploma work or state exam in specialty.                                                 |
|    |                          | Special requirements for graduating from                                                 |
|    |                          | university under this program                                                            |
|    |                          |                                                                                          |
|    |                          | graduate should know:                                                                    |
|    |                          | - theoretical and experimental research methods to                                       |
|    |                          | create promising new directions in the field of                                          |
|    |                          | electrical engineering and Power Engineering;                                            |
|    |                          | - principles of work, specifications and design                                          |
|    |                          | features of Power Engineering products developed                                         |
|    |                          | and used;                                                                                |
|    |                          | - standards, methodical and regulatory materials,                                        |
|    |                          | design, installation and operation of electrical and                                     |
|    |                          | thermal installations of the Power Engineering                                           |
|    |                          | industry;                                                                                |
|    |                          | graduate should be able to:                                                              |
|    |                          | - develop the principles of the organization and                                         |
|    |                          | design of Power Engineering companies;                                                   |
|    |                          | - use application packages to calculate, model and                                       |
|    |                          | automate Power Engineering systems design;                                               |
|    |                          | - to formulate the basic feasibility and economic                                        |
|    |                          | requirements for the Power Engineering systems                                           |
|    |                          | being projected;                                                                         |
|    |                          | - to organize the operation, installation and                                            |
|    |                          | installation of electrical and thermal facilities.                                       |
|    |                          | Training in this OP is completed by passing the                                          |
|    |                          | state exam in the following disciplines or protection                                    |
|    |                          | before the GAC diploma project (work).                                                   |
| 13 | Form of training         | Daytime                                                                                  |
|    | Duration of training     | 4 years                                                                                  |

| 15 | Volume of loans           | 240 ECTS                                                                    |
|----|---------------------------|-----------------------------------------------------------------------------|
| 16 | Languages of instruction  | State, russian                                                              |
| 17 |                           | Bachelor of Engineering and Technology in EP<br>"6B07101-Power Engineering" |
| 18 | Developer(s) and authors: | Sarsenbaev Y.A., Khidolda Y.                                                |

|      | KK1                                                                                                                                                     |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PO1  | Apply basic knowledge in the field of ecology and life safety, the basics of an anti-                                                                   |  |  |  |  |  |  |  |
|      | corruption culture, entrepreneurship and leadership, the receptivity of innovations                                                                     |  |  |  |  |  |  |  |
|      | in various types of professional and socio-political activities                                                                                         |  |  |  |  |  |  |  |
| PO2  | To be able to formulate the main technical and economic requirements for the                                                                            |  |  |  |  |  |  |  |
|      | projected energy systems. Ensure uninterrupted and technically correct operation                                                                        |  |  |  |  |  |  |  |
| DOA  | and reliable operation of the equipment.                                                                                                                |  |  |  |  |  |  |  |
| PO3  | Formulate, substantiate and prove the provisions of the application of general                                                                          |  |  |  |  |  |  |  |
|      | mathematical concepts. Know the basics of all professional disciplines; modern technologies in various fields of mechanics and technology; experimental |  |  |  |  |  |  |  |
|      | calculation methods.                                                                                                                                    |  |  |  |  |  |  |  |
| PO4  | Develop principles for the organization and design of energy enterprises, use                                                                           |  |  |  |  |  |  |  |
| 104  | application packages for calculations, modeling and automation of the design of                                                                         |  |  |  |  |  |  |  |
|      | energy systems, formulate the main technical and economic requirements for the                                                                          |  |  |  |  |  |  |  |
|      | designed energy systems                                                                                                                                 |  |  |  |  |  |  |  |
| PO5  | Possess the skills and abilities to carry out research and innovation activities to                                                                     |  |  |  |  |  |  |  |
|      | develop new knowledge and procedures for integrating knowledge in various                                                                               |  |  |  |  |  |  |  |
|      | fields, correctly and logically formulate one's thoughts in writing and orally, put                                                                     |  |  |  |  |  |  |  |
|      | into practice theoretical knowledge in a specific field of energy                                                                                       |  |  |  |  |  |  |  |
| PO6  | Use the skills of development and design on a modern elemental and technical base                                                                       |  |  |  |  |  |  |  |
| DOF  | of energy systems and individual devices                                                                                                                |  |  |  |  |  |  |  |
| PO7  | Know the standards, methodological and regulatory materials, the basics of design,                                                                      |  |  |  |  |  |  |  |
|      | installation and operation of electrical and heat engineering installations in the                                                                      |  |  |  |  |  |  |  |
| PO8  | energy industry.<br>Know the theoretical and experimental research methods in the field of energy,                                                      |  |  |  |  |  |  |  |
| 100  | principles of operation, technical characteristics and design characteristics of                                                                        |  |  |  |  |  |  |  |
|      | facilities and energy equipment                                                                                                                         |  |  |  |  |  |  |  |
| PO9  | Use the skills of organizing work on the operation, installation and commissioning                                                                      |  |  |  |  |  |  |  |
|      | of electrical and thermal equipment. Control of the implementation of plans                                                                             |  |  |  |  |  |  |  |
|      | (graphs) of inspections, tests and preventive repairs of equipment.                                                                                     |  |  |  |  |  |  |  |
| PO10 | To be a specialist in conducting experimental studies of heat and power facilities                                                                      |  |  |  |  |  |  |  |
| PO11 | Know and apply in practice the basics of engineering professional ethics; to know                                                                       |  |  |  |  |  |  |  |
|      | modern and perspective directions of development of power industry, fuel and                                                                            |  |  |  |  |  |  |  |
|      | energy complex, modern trends in the provision of electricity and heat energy.                                                                          |  |  |  |  |  |  |  |
| PO12 | Have knowledge of modern approaches in the calculation and design of energy                                                                             |  |  |  |  |  |  |  |
|      | systems, as well as the use of software tools for the management and evaluation of                                                                      |  |  |  |  |  |  |  |
|      | energy systems                                                                                                                                          |  |  |  |  |  |  |  |

# 4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

| № | Name of the discipline                                 | Brief description of the discipline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number<br>of credits | 8   |     |     |     |     |     |     |     |     |      |      |      |
|---|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| 1 | Fundamentals of<br>scientific research<br>methods      | Purpose: to form a systematic understanding of the methodology of<br>scientific cognition among students; to develop scientific thinking<br>skills; to form experience in organizing and conducting scientific<br>research; to develop a competence-based approach to the use of<br>methods and rules for conducting research in the field of mechanical<br>engineering, related processes and their technologies. Contents: stages<br>of scientific research, terms and concepts, methods of conducting an<br>experiment, mathematical methods of processing research results.<br>Concepts of engineering, laboratory and industrial experiment, bench<br>research. | 5                    |     |     |     | +   |     |     |     |     |     |      |      |      |
| 2 | Basics of Financial<br>Literacy                        | Purpose: formation of financial literacy of students on the basis of<br>building a direct link between the acquired knowledge and their<br>practical application. Contents: using in practice all kinds of tools in<br>the field of financial management, saving and increasing savings,<br>competent budget planning, obtaining practical skills in calculating,<br>paying taxes and correctly filling out tax reports, analyzing financial<br>information, orienting in financial products to choose adequate<br>investment strategies.                                                                                                                            | 5                    | +   |     |     |     |     |     |     |     |     |      |      |      |
| 3 | Fundamentals of anti-<br>corruption culture and<br>law | Purpose: to increase the public and individual legal awareness and<br>legal culture of students, as well as the formation of a knowledge<br>system and a civic position on combating corruption as an antisocial<br>phenomenon. Contents: Content: improvement of socio-economic<br>relations of the Kazakh society, psychological features of corrupt<br>behavior, formation of an anti-corruption culture, legal responsibility<br>for acts of corruption in various fields.                                                                                                                                                                                       | 5                    | +   |     |     |     |     |     |     |     |     |      |      |      |
| 4 | Ecology and life safety                                | Purpose: formation of ecological knowledge and consciousness,<br>obtaining theoretical and practical knowledge on modern methods of<br>rational use of natural resources and environmental protection.<br>Contents: the study of the tasks of ecology as a science, the laws of the<br>functioning of natural systems and aspects of environmental safety in<br>working conditions, environmental monitoring and management in the                                                                                                                                                                                                                                   |                      | +   |     |     |     |     |     |     |     |     |      |      |      |

|    |                                                      | field of its safety, ways to solve environmental problems; life safety in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   |   |   |  |  |   |   |  |
|----|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|--|--|---|---|--|
| 5  | Fundamentals of<br>economics and<br>entrepreneurship | the technosphere, emergencies of a natural and man-made nature.<br>The purpose of studying the discipline is to familiarize students with<br>the basic principles of economic theory and entrepreneurial activity.<br>The course includes the study of basic economic concepts, market<br>mechanisms, management tools and key aspects of entrepreneurship,<br>such as starting and managing a business, analyzing the market<br>environment, financial planning, assessing risks and developing<br>development strategies.                                       | 5 | + |   |   |   |  |  |   |   |  |
| 6  | Theoretical<br>fundamentals of heat<br>engineering   | Students should have an understanding of the principles of operation<br>of combined-cycle plants, in particular, waste heat boilers, gas-gas,<br>gas-water and other types of heat exchangers; Know the basic laws<br>and concepts of heat and mass transfer; thermal characteristics of<br>bodies and media; equations of the system parameters. To be able to<br>use the basic provisions and laws of heat engineering for the analysis<br>of heat transfer processes; use tables and diagrams, calculate cycle<br>efficiency based on heat exchange processes. | 6 |   | + |   |   |  |  | + |   |  |
| 7  | Power supply of enterprises                          | The discipline studies the issues of supplying enterprises with all types<br>of energy necessary to fulfill the production plans of enterprises and<br>are obtained from both local and district power supply installations.                                                                                                                                                                                                                                                                                                                                      | 5 | + |   |   |   |  |  | + |   |  |
| 8  | Modern electric power<br>industry                    | Energy resources and their use. Renewable and non-renewable sources<br>of energy. Modern methods of obtaining electrical energy. Cycles of<br>thermal, electric, hydroelectric and nuclear power plants. Methods of<br>converting various types of energy into electrical energy. Non-<br>traditional ways of obtaining energy. The concept of the electrical<br>system. Management of electric power systems. The impact of<br>technology and energy on the biosphere.                                                                                           | 4 |   |   |   |   |  |  | + | + |  |
| 9  | Introduction to the specialty                        | The discipline examines the basics of energy, electric ground transport<br>and charging infrastructure. Introduces the history of the development<br>of the electric power industry. Provides information about the<br>characteristics of the specialty. Studies the main technical means of<br>production, transmission, conversion and consumption of electrical<br>energy. Forms an idea of ground-based electric vehicles and charging<br>infrastructure elements. Shows the possibilities of using renewable<br>energy sources to charge electric vehicles.  | 4 | + |   |   |   |  |  | ÷ |   |  |
| 10 | Mathematics I                                        | Purpose: to introduce students to the fundamental concepts of linear<br>algebra, analytical geometry and mathematical analysis. To form the<br>ability to solve typical and applied problems of the discipline.<br>Contents_ Elements of linear algebra, vector algebra and analytical                                                                                                                                                                                                                                                                            | 5 |   |   | + | + |  |  |   |   |  |

| 11 | Mathematics II                | <ul> <li>geometry. Introduction to the analysis. Differential calculus of a function of one variable. The study of functions using derivatives.</li> <li>Functions of several variables. Partial derivatives. The extremum of a function of two variables.</li> <li>Purpose: To teach students integration methods. To teach you how to choose the right method for finding the primitive. To teach how to apply a certain integral to solve practical problems. Contents_ integral calculus of the function of one and two variables, series theory. Indefinite integrals, methods of their calculation. Certain integrals and applications of certain integrals. Improper integrals. Theory of numerical and functional series, Taylor and Maclaurin series,</li> </ul> | 5 |  | + |   | + |  |   |     |   |   |
|----|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|---|---|---|--|---|-----|---|---|
| 12 | Mathematics III               | application of series to approximate calculations_<br>The discipline is a continuation of Mathematics II. The course<br>includes sections: ordinary differential equations and elements of<br>probability theory and mathematical statistics. Differential equations<br>with separable variables, homogeneous, in full differentials, linear<br>inhomogeneous differential equations with constant coefficients,<br>systems of linear differential equations with constant coefficients,<br>finding the probability of events, calculating the numerical<br>characteristics of random variables, using statistical methods for<br>processing experimental data are studied.                                                                                               | 5 |  | + |   | + |  |   |     |   |   |
| 13 | Industrial electronics        | The purpose of the course is to study the principles of operation of<br>functionally complete electronic devices used in systems of electric<br>power industry, automation of power systems and relay protection,<br>energy cybernetics. Get the basic training necessary for the subsequent<br>solution of various kinds of professional tasks related to the rational<br>choice of electronic devices and their modes of operation in electronic<br>equipment. Master the main types of devices and circuits used in<br>electronics, the principle of operation and features of linear, pulse and<br>digital devices for signal processing in electronic control systems and<br>information display.                                                                    | 5 |  |   | + |   |  |   |     | - | + |
| 14 | Engineering<br>Thermodynamics | The course provides a systematic exposition of physical kinetics with<br>thermodynamics. All specific tasks are considered using common<br>methods. The fundamental laws of thermodynamics are formulated<br>based on a multi-year study of real bodies and processes. As well as<br>the methods for solving specific problems of nonequilibrium statistical<br>physics of kinetic phenomena in various systems (gases, liquids,<br>solids, plasmas) are described. The consideration of processes in<br>plasma, irreversible processes and the method of calculation of<br>entropy production as a quantitative measure of irreversibility are of                                                                                                                        |   |  |   |   |   |  | - | F . | + |   |

|    |                                          | particular interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |  |   |   |  |  |  |
|----|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--|---|---|--|--|--|
| 15 | Physics I                                | Purpose: to study the basic physical phenomena and laws of classical<br>and modern physics; methods of physical research; the influence of<br>physics on the development of technology; the relationship of physics<br>with other sciences and its role in solving scientific and technical<br>problems of the specialty. Contents: mechanics, dynamics of rotational<br>motion of a solid body, mechanical harmonic waves, fundamentals of<br>molecular-kinetic theory and thermodynamics, transfer phenomena,<br>continuum mechanics, electrostatics, direct current, magnetic field,<br>Maxwell's equations.                                                                                                                                                                                         | 5 | + |   |  | + |   |  |  |  |
| 16 | Physics II                               | Purpose: to form students' knowledge and skills in using fundamental<br>laws, theories of classical and modern physics, as well as methods of<br>physical research as the basis of a system of professional activity.<br>Contents: harmonic oscillations, damped oscillations, alternating<br>current, wave motion, laws of refraction and reflection of light,<br>quantum optics, laws of thermal radiation, photons, their<br>characteristics, wave function, electrical conductivity of metals,<br>atomic nucleus, its structure and properties, binding energy,<br>radioactivity.                                                                                                                                                                                                                   | 5 | + |   |  | + |   |  |  |  |
| 17 | Electric devices                         | Classification of electrical apparatus and the requirements imposed on<br>them. Electrodynamic forces in electrical apparatus. Heating of<br>electrical apparatus. Electrical contacts. Electromagnets.<br>Fundamentals of the theory of combustion and extinction of the<br>electric arc. Insulating of electrical apparatus. Contactors and<br>magnetic starters, thyristor starters. Controllers, commanders and<br>rheostats. Circuit breakers and fuses. Electromagnetic relays for<br>current and voltage. Thermal relay, time relay, polarized, indicating<br>relays. Magnetic amplifiers. Semiconductor electrical apparatus. High<br>voltage circuit breakers. Disconnectors, separators and short-circuiting<br>switches. Reactors, arresters. Measuring current and voltage<br>transformers. | 5 |   | + |  |   |   |  |  |  |
| 18 | Electrical and technical material scince | Classification of electrotechnical materials; Liquid dielectrics;<br>Polymers; Inorganic electrical insulating materials; Conductor,<br>superconducting and semiconductor materials; Magnetic materials and<br>their classification and properties; Dielectrics and their electrical<br>conductivity; Breakdown of gases, liquid and solid dielectrics; thermal<br>conductivity and radiation resistance of materials.                                                                                                                                                                                                                                                                                                                                                                                  | 5 |   | + |  |   | + |  |  |  |
| 19 | Reading electrical<br>circuits           | Theory, the design of electrical apparatus and machines and their graphic designation according to state standards and a unified system of design documents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 |   | + |  |   | + |  |  |  |

| 20 |                                              | It is considered in the discipline: basic concepts and definitions used<br>in electrical engineering; modern methods of modeling of<br>electromagnetic processes; methods of analysis of electric and<br>magnetic circuits; numerical methods of the analysis of electrical<br>circuits; basic laws and principles of electrical engineering, properties<br>and characteristics of electrical circuits; methods of analysis of<br>electrical circuits in steady state and transient modes; selection of the<br>optimal method of calculation, to determination of the main<br>parameters and characteristics of electrical circuits | 5 |       |   |  |  |  |   |   |
|----|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|---|--|--|--|---|---|
| 21 | of Electrical Engineering<br>II              | The course gives an idea of the basic equations and connection<br>schemes; electrical filters and quadripoles; transients in linear<br>electrical circuits, RL and RC circuits of the first degree; calculation<br>of transients in circuits of the second degree. Introduces students to the<br>characteristics of similar networks, types of long networks, the<br>operator method, non-linear chains of sinusoidal currents and methods<br>for their analysis.                                                                                                                                                                   | 5 | <br>- |   |  |  |  |   |   |
| 22 | Automated electric drive                     | Discipline is a basic subject, where students get a general idea of the<br>modern electric drive. The main topics of the course: Mechanics of<br>electric drive, Electric drives of direct and alternating current.<br>Adjustable electric drives. Transients in the drive. Power<br>characteristics of the electric drive. Design of electric drives of typical<br>industrial mechanisms.                                                                                                                                                                                                                                          | 6 |       | + |  |  |  |   |   |
| 23 | Information and<br>measuring technics        | 5B071800 "Information and measuring technics" is to obtain<br>knowledge in the field of measurement and evaluation, processing of<br>the measurement signals, the study of modern principles of<br>construction of electric engineering, information systems and<br>measuring systems, the use of the methods and the use of measuring<br>instruments in various practice areas.                                                                                                                                                                                                                                                    | 5 |       |   |  |  |  | + |   |
| 24 | Fundamentals of<br>Artificial Intelligence   | Purpose: to familiarize students with the basic concepts, methods and<br>technologies in the field of artificial intelligence: machine learning,<br>computer vision, natural language processing, etc. Contents: general<br>definition of artificial intelligence, intelligent agents, information<br>retrieval and state space exploration, logical agents, architecture of<br>artificial intelligence systems, expert systems, observational learning,<br>statistical learning methods, probabilistic processing of linguistic<br>information, semantic models, natural language processing systems.                              | 5 | +     |   |  |  |  | - | - |
| 25 | Theory and practice of<br>project management | The goal is for students to acquire knowledge in the field of theory<br>and practice necessary for project management. Discipline topics:<br>Project-oriented management system model, International project<br>management standards, Project life cycle and organizational                                                                                                                                                                                                                                                                                                                                                         | 5 | +     |   |  |  |  | + |   |

|    |                         |                                                                            | 1 |   | <br>  |   | <br> |   | <br> |   |  |
|----|-------------------------|----------------------------------------------------------------------------|---|---|-------|---|------|---|------|---|--|
|    |                         | structures, Project management processes, Project financial                |   |   |       |   |      |   |      |   |  |
|    |                         | management, Project communications management, Project                     |   |   |       |   |      |   |      |   |  |
|    |                         | stakeholder management, Project risk management, Project                   |   |   |       |   |      |   |      |   |  |
|    |                         | procurement management, Project closure documentation                      |   |   |       |   |      |   |      |   |  |
| 26 | Energy conversation in  | Knowledge for the development of theoretical and practical                 | 5 |   |       |   |      | + | -    | F |  |
|    | heat power and heat     | knowledge on energy efficiency, energy conversion, energy audits and       |   |   |       |   |      |   |      |   |  |
|    | engineering             | energy-audit facilities, energy-saving technologies.                       |   |   |       |   |      |   |      |   |  |
| 27 | Main Machinery          | The course occupies an important place among the general technical         | 5 |   | +     | + |      |   |      |   |  |
|    | Operation of Heat Power | disciplines that determine the theoretical level of professional training  |   |   |       |   |      |   |      |   |  |
|    | Plant                   | of specialists in the modern system of education. The main objectives      |   |   |       |   |      |   |      |   |  |
|    |                         | of the course is the formation of knowledge in the field of operation of   |   |   |       |   |      |   |      |   |  |
|    |                         | heat supply equipment; mastering the skills and abilities to assess the    |   |   |       |   |      |   |      |   |  |
|    |                         | functional, quantitative and qualitative characteristics of the heating    |   |   |       |   |      |   |      |   |  |
|    |                         | supply of devices. The discipline deals with the main equipment of         |   |   |       |   |      |   |      |   |  |
|    |                         | thermal power plants - boilers, turbines, pumping equipment,               |   |   |       |   |      |   |      |   |  |
|    |                         | capacitors and their operation. The issues of repair and equipment         |   |   |       |   |      |   |      |   |  |
|    |                         | reliability are touched.                                                   |   |   |       |   |      |   |      |   |  |
| 28 | Legal regulation of     | Purpose: the goal is to form a holistic understanding of the system of     | 5 | + |       |   |      |   |      |   |  |
|    | intellectual property   | legal regulation of intellectual property, including basic principles,     |   |   |       |   |      |   |      |   |  |
|    |                         | mechanisms for protecting intellectual property rights and features of     |   |   |       |   |      |   |      |   |  |
|    |                         | their implementation. Contents: The discipline covers the basics of IP     |   |   |       |   |      |   |      |   |  |
|    |                         | law, including copyright, patents, trademarks, and industrial designs.     |   |   |       |   |      |   |      |   |  |
|    |                         | Students learn how to protect and manage intellectual property rights,     |   |   |       |   |      |   |      |   |  |
|    |                         | and consider legal disputes and methods for resolving them.                |   |   |       |   |      |   |      |   |  |
| 29 | Heat and mass transfer  | The goal of the course is to train specialists in the field of application | 5 |   | -     | + |      | + |      |   |  |
|    | equipment in heat power | of thermodynamic and heat exchange methods for analyzing the               |   |   |       |   |      |   |      |   |  |
|    | engineering             | processes of heat and mass transfer equipment of thermal power plants      |   |   |       |   |      |   |      |   |  |
|    |                         | and other industrial enterprises. Considers the processes of heat and      |   |   |       |   |      |   |      |   |  |
|    |                         | mass transfer in the apparatus and installations of heat and power         |   |   |       |   |      |   |      |   |  |
|    |                         | engineering. These include boiler installations, waste heat boilers, heat  |   |   |       |   |      |   |      |   |  |
|    |                         | exchangers of various pressures.                                           |   |   |       |   |      |   |      |   |  |
| 30 | Fundamentals of         | Purpose: the goal is for students to master the theoretical foundations    | 5 |   | <br>+ |   | +    |   |      |   |  |
|    | sustainable development | and practical skills in the field of sustainable development and ESG,      |   |   |       |   |      |   |      |   |  |
|    | and ESG projects in     | as well as to develop an understanding of the role of these aspects in     |   |   |       |   |      |   |      |   |  |
|    | Kazakhstan              | the modern economic and social development of Kazakhstan.                  |   |   |       |   |      |   |      |   |  |
|    |                         | Contents: introduces the principles of sustainable development and the     |   |   |       |   |      |   |      |   |  |
|    |                         | implementation of ESG practices in Kazakhstan, includes the study of       |   |   |       |   |      |   |      |   |  |
|    |                         | national and international standards, analysis of successful ESG           |   |   |       |   |      |   |      |   |  |
|    |                         | projects and strategies for their implementation in enterprises and        |   |   |       |   |      |   |      |   |  |
|    |                         | organizations.                                                             |   |   |       |   |      |   |      |   |  |
|    |                         | 5.5                                                                        |   |   |       |   |      |   |      |   |  |

| <b>C</b> 1 |                           |                                                                          | - | <br> | <br>1 |   |   | 1 | , i      | r |   |   |
|------------|---------------------------|--------------------------------------------------------------------------|---|------|-------|---|---|---|----------|---|---|---|
| 31         | Fundamentals of the       | Considers the combustion processes of liquid, solid and gaseous fuels,   | 5 |      |       |   | + |   |          |   |   |   |
|            | theory of fuel            | as well as the associated conditions for optimal combustion. The         |   |      |       |   |   |   |          |   |   |   |
|            | combustion and the        | devices ensuring the burning of various types of fuels are considered.   |   |      |       |   |   |   |          |   |   |   |
|            | combustion device         | The principles of operation of fuel burning devices, their main design   |   |      |       |   |   |   |          |   |   |   |
|            |                           | features. Features of burning fuels of various aggregative state.        |   |      |       |   |   |   |          |   |   |   |
|            |                           | Chemical combustion processes, optimal combustion conditions.            |   |      |       |   |   |   |          |   |   |   |
|            |                           | Torch, combustion zone, oxidizers.                                       |   |      |       |   |   |   |          |   |   |   |
| 32         | Electrical insulation and | The purpose of the discipline is the study and development of the        | 5 |      |       |   |   |   | +        |   |   |   |
|            | cable technology          | principles of design and production of electrical insulation, cables,    |   |      |       |   |   |   |          |   |   |   |
|            |                           | wires used in electric power, electrical equipment                       |   |      |       |   |   |   |          |   |   |   |
| 33         | Electrical part of power  | Consideration of the design of electrical apparatus, characteristics and | 6 |      |       |   |   |   |          |   |   |   |
| 00         | stations                  | modes of equipment, electrical circuits, methods of limiting short-      | Ŭ |      |       | Ŧ |   |   |          |   |   |   |
|            | Stations                  | circuit currents, etc. Calculation and selection of basic data on the    |   |      |       |   |   |   |          |   |   |   |
|            |                           | parameters and characteristics of electrical machines, power             |   |      |       |   |   |   |          |   |   |   |
|            |                           | transformers, electrical apparatus and conductors. Selection of          |   |      |       |   |   |   |          |   |   |   |
|            |                           | materials for the development of the main circuits, schemes of own       |   |      |       |   |   |   |          |   |   |   |
|            |                           | needs and structures of power plants and substations.                    |   |      |       |   |   |   |          |   |   |   |
| 2.4        |                           | * *                                                                      | ~ |      |       |   |   |   |          |   |   |   |
| 34         | Electrotechnical and      | The discipline "Electrical and heat engineering measurements" is a       | 5 |      |       |   | + |   |          | + |   |   |
|            | thermotechnical           | core subject, where students receive basic knowledge of the theory,      |   |      |       |   |   |   |          |   |   |   |
|            | measurements              | device, as well as their graphical designation according to state        |   |      |       |   |   |   |          |   |   |   |
|            |                           | standards and a single system of design documents (ESKD). They also      |   |      |       |   |   |   |          |   |   |   |
|            |                           | gain knowledge of metrology, the classification of measurements and      |   |      |       |   |   |   |          |   |   |   |
|            |                           | their errors, methods for measuring various electrical and heat          |   |      |       |   |   |   |          |   |   |   |
|            |                           | engineering quantities.                                                  |   |      |       |   |   |   |          |   |   |   |
| 35         | The quality of electrical | THE PURPOSE AND OBJECTIVE OF THE COURSE Training of a                    | 5 |      |       |   |   | + | +        |   |   |   |
|            | energy                    | highly qualified specialist capable of performing the main tasks         |   |      |       |   |   |   |          |   |   |   |
|            |                           | related to reliable and economical supply of electricity to consumers    |   |      |       |   |   |   |          |   |   |   |
|            |                           | with its standardized quality, reliability and efficiency. BRIEF         |   |      |       |   |   |   |          |   |   |   |
|            |                           | DESCRIPTION OF THE COURSE The main indicators of the quality             |   |      |       |   |   |   |          |   |   |   |
|            |                           | of electrical energy. Reactive power compensation. The quality and       |   |      |       |   |   |   |          |   |   |   |
|            |                           | performance of electricity. Voltage and frequency deviations.            |   |      |       |   |   |   |          |   |   |   |
|            |                           | Asymmetry and non-sinusoidality. The norms of the SCE.                   |   |      |       |   |   |   |          |   |   |   |
|            |                           | KNOWLEDGE, SKILLS, AND SKILLS AT THE END OF THE                          |   |      |       |   |   |   |          |   |   |   |
|            |                           | COURSE Mastering the requirements of electrical energy quality           |   |      |       |   |   |   |          |   |   |   |
|            |                           | indicators, the ability to calculate voltage and frequency deviations    |   |      |       |   |   |   |          |   |   |   |
|            |                           | that ensure high-quality voltage at electric energy receivers            |   |      |       |   |   |   |          |   |   |   |
| 36         | Modeling in power         | Acquaintance of students with the basic elements of electric power       | 5 |      |       |   |   |   | <b>_</b> |   | 4 | + |
|            | systems                   | systems (EPS) and their mathematical and virtual models, the             |   |      |       |   |   |   | т        |   | ľ | - |
|            |                           | development of students' skills in modeling electric power objects in    |   |      |       |   |   |   |          |   |   |   |
|            |                           | the MATLAB software environment. The course covers the following         |   |      |       |   |   |   |          |   |   |   |
|            |                           | are the telefold software environment. The course covers the following   |   |      |       |   |   |   |          |   |   |   |

|    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r | <br> |   |   |   |   |   |   |  |  |
|----|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---|---|---|---|---|---|--|--|
| 37 | Transition processes in | main topics: modeling single-phase and three-phase power<br>transformers, modeling DC machines in generator and motor modes,<br>modeling asynchronous machines in generator and motor modes,<br>simulating synchronous machines in generator and motor modes,<br>modeling power lines, modeling loads, and modeling switching<br>devices .<br>The discipline "Transients in Power Systems" is Variable discipline,<br>forming students' willingness to learn theoretical knowledge, practical<br>skills and skills of using calculation algorithms electromagnetic                                                                                                                                                                                                                                                                                                                                                                                                          | 5 |      | + | - |   |   |   | + |  |  |
|    |                         | transients arising from short circuits and other violations of the normal<br>operation of the energy system, as well as knowledge necessary for<br>understanding transients in electromechanical systems and their<br>resistance to change of operating modes and deviations of the<br>operating mode from normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |      |   |   |   |   |   |   |  |  |
| 38 |                         | The study of the physical nature of the processes of conversion of<br>renewable energy sources (RES) into electrical energy and the<br>implementation of the most economical and safe conditions for<br>operating power plants based on renewable energy. Formation of<br>graduates' readiness to conduct a feasibility analysis, comprehensively<br>justifying the decisions made and implemented in the field of<br>operation of power plants based on renewable energy sources;<br>application of results in practice, the desire for self-development,<br>improvement of their skills and skills - rational use of technological<br>processes and methods for the production and transmission of<br>electricity; possess the method of calculating the design and optimal<br>analysis of power supply systems, acquire knowledge and practical<br>skills for reliable and safe operation of electrical equipment operating<br>on the basis of renewable energy sources. | 6 |      |   |   | + |   |   | + |  |  |
| 39 | and thermal energy      | The discipline studies technologies that allow generating and storing<br>thermal energy using new and renewable technologies. Energy storage<br>allows you to save energy and provide a reserve in the event of a<br>sudden shutdown of the main energy source. The types of energy<br>storage and ways of their application in all modern spheres of human<br>activity are considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 |      |   |   |   | + |   | + |  |  |
| 40 | Electrical machines     | The discipline "Electrical Machines" will allow you to have an idea<br>about the technical condition of electric drives used in the process,<br>their torque characteristics and capabilities, instrumentation and<br>devices that control the parameters of electric machines, will give the<br>necessary skills for their proper operation, will allow in the<br>preparation of technical specifications for the reconstruction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 |      |   |   |   |   | + | + |  |  |

| 41       Laboratory workshop on<br>machines.       To form a specialist with solid fundamentals of knowledge, high<br>mathematical culture and practical skills, sufficient for successful<br>nechonologies in the<br>electric power industry I<br>necessary knowledge and achievements in the field of programming<br>and solving engineering problems. Master the methodology of<br>automated solving engineering problems. And the development and design to software<br>provide theoretical training in the development and design to software<br>provide theoretical training in the developments in<br>electric power industry.       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                           | T                                                                        | 1 I |  |   | <br> |   |   |   |   | <br> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------|--------------------------------------------------------------------------|-----|--|---|------|---|---|---|---|------|
| 41       Laboratory workshop on<br>machines.       To form a specialist with solid fundamentals of knowledge, high<br>mathematical culture and practical skills, sufficient for successful<br>technologies in the<br>electric power industry I<br>and solving engineering problems. Master the methodology of<br>automated software development of automation and control systems.<br>Learn how to use moderm software development and design tools, as<br>well as design enchdologies and engineering problems in<br>the discipline "Laboratory Workshop on<br>The discipline" Laboratory Workshop on<br>The discipline" Laboratory Workshop on<br>The disciplines that form processional skills in solving problems in<br>electric power industrial<br>technologies in the<br>electric power industrial<br>tochnologies in the<br>electric power industrial<br>technologies in the<br>electric power industrial<br>industry: examining the basic principles and methods that are part of<br>electromechanical systems. Acquire the necessary stock of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning; system approach to the<br>installation and commissioning of electric and machines. Acquire<br>and use the application software package for modeling and malyring<br>modern industrial to matomation and commissioning; system approach to the<br>installation and commissioning of electric drive systems;<br>stages of installation and commissioning of electric and machines. Acquire<br>the entric list of tasks related to the choice of hardware and software,<br>and use the application software package for modeling and analyring<br>modern power supply systems common industrial installations and<br>projecting of systems of anythem package for m |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| 1       umachines.       Image: Construction of the second study is solid fundamentals of knowledge, high modern industrial culture and practical skills, sufficient for successful production activities and allowing hint to independently master new mathematical culture and practical skills, sufficient for successful production activities and allowing hint to independently master new eccessary knowledge and achievements in the field of programming and solving engineering problems. Master the methodology of automated software development and design of software bills in creating high-quality automation and control systems. Need as design methodologies and regulatory documentation to acquire broke and automation and control systems. Provide heoretical training in the development and design of software broke powers. Provide heoretical training in the development and design of software broke powers and skills in creating high-quality automation and control systems. Technologies in Power Engineering UT is one of the main fundamental inchance and automation as control systems. Stages of installation and control systems in industry automation and control systems in industry examining the basic principles and methods that are part of electric power industry in the mecessary knowle system system approach to the installation of electric drive systems; stages of installation, options for constructing closed-frequency systems of variable frequency drives, calculate and use modern power supply system sort modeling and software and software and software and software and software mechanisms.       4       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| 41       Laboratory workshop on<br>mathematical culture and practical skills, sufficient for successful<br>technologies in the<br>electric power industrial<br>mathematical software development in the field of programming<br>and solving engineering problems. Master the methodology of<br>automated software development of automation and control systems.<br>Learn how to use modern software development and design tools, as<br>well as design methodologies and regulatory documentation to acquire<br>skills in creating high-quality automation and control systems.<br>Learn how to use modern software development and design of software<br>tools and automation and control software.<br>Provide theoretical training in the development and design of software<br>tools and automation and control systems.       4         42       Laboratory workshop on<br>The discipline "Laboratory Workshop on Modern Industrial<br>technologies in the<br>electric power industry"       4         11       electromechanical systems. Acquire the necessary stock of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning; system approach to the<br>installation and commissi                                                                                                                       |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| 42       Laboratory workshop on<br>noduction activities and and methanical comunity of the main fundamental<br>technologies in the<br>electric power industry:       n=thermatical exilture and practical skills, sufficient for successful<br>automated software development of automatics<br>of ware development of automated software development and design tools, as<br>well as design methodologies and regulatory documentation to acquire<br>skills in creating high-quality automation and control systems.<br>Learn how to use modern software development and design tools, as<br>well as design methodologies and regulatory documentation to acquire<br>skills in creating high-quality automation and control systems.<br>Provide theoretical training in the development and design of software<br>tools and automatics and control systems.       4       +       +       +         42       Laboratory workshop on<br>disciplines that form professional skills in creating high-quality automation of electric<br>disciplines that form professional skills in solving problems in<br>electric power industry<br>industry, examining the basic principles and methods that are part of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation, options for constructing<br>closed-frequency systems of aniable-frequency drives, perform<br>the entire list of tasks related to the choice of hardware,<br>and use the application software package of modeling and analyzing<br>modern power supply systems common industrial mechanisms.       5       +       +       +       +         43       Calculation and<br>projecting of systems of transful ring, rise, lectric locomotives, conveyors.       5       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                           | machines.                                                                |     |  |   |      |   |   |   |   |      |
| kechnologies in the<br>electric power industry I       induction activities and allowing him to independently master new<br>necessary knowledge and achievements in the field of programming<br>and solving engineering problems. Master the methodology of<br>automated software development of automation and control systems.<br>Learn how to use modern software development and design tools, as<br>well as design methodologies and regulatory documentation to acquire<br>skills in creating high-quality automation and control systems.<br>Learn how to use modern software development and design tools, as<br>well as design methodologies and regulatory documentation to acquire<br>skills in creating high-quality automation and control systems.       +       +         42       Laboratory workshop on<br>modern industrial<br>technologies in the<br>electric power industry<br>II       Technologies in Power Engineering IT' is one of the main fundamental<br>disciplines that form professional skills in solving problems in<br>industry, examining the basic principles and methods that are part of<br>electromechanical systems. Acquire the necessary stock of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning of electric industry system approach to the<br>installation and commissioning of electric drive systems;<br>stages of installation and commissioning of electrical machines. Acquire<br>knowledge of the principles of installation, options for constructing<br>closed-frequency systems of variable frequency drives, electride and analyzing<br>modern power supply systems common industrial mechanisms.       +       +       +         43       Calculation and<br>projecting of systems of       The automated electric drives of typical industrial installations and<br>projecting of systems of       5       +       +       + <th>41</th> <th>Laboratory workshop on</th> <th>To form a specialist with solid fundamentals of knowledge, high</th> <th>5</th> <th></th> <th></th> <th></th> <th></th> <th>+</th> <th>+</th> <th></th> <th></th>                                                | 41 | Laboratory workshop on    | To form a specialist with solid fundamentals of knowledge, high          | 5   |  |   |      |   | + | + |   |      |
| electric power industry 1       necessary knowledge and achievements in the field of programming and solving engineering problems. Master the methodology of automated solvance development of automation and control systems. Learn how to use modern software development and design tools, as well as design methodologies and regulatory documentation and control systems. Learn how to use modern software development and design tools, as well as design methodologies and regulatory documentation and control systems. Provide theoretical training in the development and design of software tools and automated software development and design of software tools and automation and control systems.       4         42       Laboratory workshop on methodic in the development and design of software tools and automated software development and design of software tools and automated software development and design of software tools and automated software development and design of software tools and automated software development and design of software tools and automated software development and design of software tools and automated software development and control systems.       4         42       Laboratory workshop on methodic in the development and design of software tools and automated software development and design of electric prove systems in industry, examining the basic principles and methods that are part of electric power industry is industry; examining the basic principles and periods that are part of electrochanical systems. Acquire knowledge in the simulation of electric drive systems; stages of installation and commissioning of electric drive systems; stages of installation and commissioning of electric drives systems for anisheling requerey drives, calculate and simulate systems of asynchronous variable-frequency drives, perform the entine list of tasks related to the choice of hardware and                                                                                                                                                                                                                          |    | modern industrial         | mathematical culture and practical skills, sufficient for successful     |     |  |   |      |   |   |   |   |      |
| 42       Laboratory workshop on moderni and solving engineering II" is one of the main fundamental technologies in the disciptione shaft is nolver a development and design of software tools and automation and control systems.       42       Laboratory workshop on mediation and control systems.       4       + + + +         III       Technologies in the electric driving in the development and design of software tools and automation of electric drive systems.       + + +       +         III       Claculation and commissioning of electric drive systems, stages of installation and commissioning of electric drive systems, stages of installation and commissioning of electric drive systems, stages of installation and commissioning of electric drive systems, stages of installation and commissioning of electric drive systems, and use the application software package for modeling and analyzing modern power supply systems common industrial mechanisms.       5       +       +       +       +         43       Calculation and projecting of systems of constructing projecting of systems of constructing industrial mechanisms.       5       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | technologies in the       | production activities and allowing him to independently master new       |     |  |   |      |   |   |   |   |      |
| 43       Calculation and commissioning       The automated electric powers of systems of complexes (excavators, drilling rigs, electric locavators, drives, and use that projecting of systems of locavators, drives, conveyors, electric locavators, drives, conveyors, electric locavators, drilling rigs, electric locavators, drives, conveyors, electric locavators, drilling rigs, electric locavators, drives, conveyors, electric locavators, drives, conveyors, electric locavators, drilling rigs, electric locavators, drillin                                                                                                                                           |    | electric power industry I | necessary knowledge and achievements in the field of programming         |     |  |   |      |   |   |   |   |      |
| 4       Learn how to use modern software development and design tools, as well as design methodologies and regulatory documentation to acquire skills in creating high-quality automation and control software tools and automation and control software tools and automation and control software tools and automation and control software technologies in Power Engineering IT is one of the main fundamental disciplines that form professional skills in solving problems in industry, examining the basic principles and methods that are part of electric power industry industry, examining the basic principles and methods to the simulation of electric drive systems. Stages of installation and commissioning; system approach to the installation and commissioning of electric drive systems; stages of installation and commissioning of electric drives, calculate and simulate systems of asynchronous variable frequency drives, calculate and simulate systems of asynchronous variable frequency drives, calculate and simulate systems of asynchronous variable frequency drives, calculate and simulate systems of the choice of hardware and software, and use the application software package for modeling and analyzing modern power supply systems common industrial mechanisms.       5       +       +       +       +       +         43       Calculation and projecting of systems of complexes (excavators, drilling rigs, electric locomotives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <th></th> <th></th> <th>and solving engineering problems. Master the methodology of</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                        |    |                           | and solving engineering problems. Master the methodology of              |     |  |   |      |   |   |   |   |      |
| 43       Calculation and       The automated electric drives of typical industrial installations.         43       Calculation and       The automated electric drives of typical industrial installations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                           | automated software development of automation and control systems.        |     |  |   |      |   |   |   |   |      |
| 4       well as design methodologies and regulatory documentation to acquire skills in creating high-quality automation and control software. Provide theoretical training in the development and design of software tools and automation and control systems.       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| 43       Calculation and       Provide theoretical training in the development and design of software projecting of systems of synchronous variable-frequency drives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + </th <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| 43       Calculation and       Provide theoretical training in the development and design of software projecting of systems of synchronous variable-frequency drives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + </th <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| <ul> <li>Laboratory workshop on<br/>modern industrial<br/>technologies in Power Engineering II" is one of the main fundamental<br/>disciplines that form professional skills in solving problems in<br/>industry, examining the basic principles and methods that are part of<br/>electric power industry<br/>II</li> <li>II</li> <li>III</li> <li>IIII</li> <li>III</li> <li>III</li> <li>III</li> <li>III</li> <li>III</li> <li>III</li> <li>III</li> <li>IIII</li>     &lt;</ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| modern industrial<br>technologies in Power Engineering II" is one of the main fundamental<br>disciplines that form professional skills in solving problems in<br>industry, examining the basic principles and methods that are part of<br>electric power industry<br>IITechnologies in the<br>disciplines that form professional skills in solving problems in<br>industry, examining the basic principles and methods that are part of<br>electric power industry<br>IIImage: Stage of installation and commissioning; systems Acquire the necessary stock of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning; system approach to the<br>installation and commissioning of electrical machines. Acquire<br>knowledge of the principles of installation, options for constructing<br>closed-frequency systems of variable frequency drives, calculate and<br>simulate systems of asynchronous variable-frequency drives, perform<br>the entire list of tasks related to the choice of hardware and software,<br>and use the application software package for modeling and analyzing<br>modern power supply systems common industrial mechanisms.++43Calculation and<br>projecting of systems of<br>complexes (excavators, drilling rigs, electric locomotives, conveyors,5++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                           | tools and automation and control systems.                                |     |  |   |      |   |   |   |   |      |
| modern industrial<br>technologies in Power Engineering II" is one of the main fundamental<br>disciplines that form professional skills in solving problems in<br>industry, examining the basic principles and methods that are part of<br>electric power industry<br>IITechnologies in the<br>disciplines that form professional skills in solving problems in<br>industry, examining the basic principles and methods that are part of<br>electric power industry<br>IIImage: Stage of installation and commissioning; systems Acquire the necessary stock of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning; system approach to the<br>installation and commissioning of electrical machines. Acquire<br>knowledge of the principles of installation, options for constructing<br>closed-frequency systems of variable frequency drives, calculate and<br>simulate systems of asynchronous variable-frequency drives, perform<br>the entire list of tasks related to the choice of hardware and software,<br>and use the application software package for modeling and analyzing<br>modern power supply systems common industrial mechanisms.++43Calculation and<br>projecting of systems of<br>complexes (excavators, drilling rigs, electric locomotives, conveyors,5++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 | Laboratory workshop on    | The discipline "Laboratory Workshop on Modern Industrial                 | 4   |  |   | +    |   | + |   |   |      |
| technologies in the<br>electric power industry<br>IIdisciplines that form professional skills in solving problems in<br>industry, examining the basic principles and methods that are part of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning of electrical machines. Acquire<br>knowledge of the principles of installation, options for constructing<br>closed-frequency systems of asynchronous variable-frequency drives, calculate and<br>simulate systems of asynchronous variable-frequency drives, perform<br>the entire list of tasks related to the choice of hardware and software,<br>and use the application software package for modeling and analyzingmodeling and analyzingmodeling and analyzing43Calculation and<br>projecting of systems of<br>projecting of systems ofThe automated electric drives of typical industrial installations and<br>complexes (excavators, drilling rigs, electric locomotives, conveyors,5+++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | · · ·                     |                                                                          |     |  |   |      |   |   |   |   |      |
| IIelectromechanical systems. Acquire the necessary stock of<br>fundamental knowledge in the simulation of electric drive systems;<br>stages of installation and commissioning; system approach to the<br>installation and commissioning of electrical machines. Acquire<br>knowledge of the principles of installation, options for constructing<br>closed-frequency systems of variable-frequency drives, calculate and<br>simulate systems of asynchronous variable-frequency drives, perform<br>the entire list of tasks related to the choice of hardware and software,<br>and use the application software package for modeling and analyzing<br>modern power supply systems common industrial mechanisms.5++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | technologies in the       |                                                                          |     |  |   |      |   |   |   |   |      |
| 43Calculation and<br>projecting of systems ofThe automated electric drives of typical industrial installations and<br>complexes (excavators, drilling rigs, electric locomotives, conveyors,5++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | electric power industry   | industry, examining the basic principles and methods that are part of    |     |  |   |      |   |   |   |   |      |
| stages of installation and commissioning; system approach to the<br>installation and commissioning of electrical machines. Acquire<br>knowledge of the principles of installation, options for constructing<br>closed-frequency systems of variable frequency drives, calculate and<br>simulate systems of asynchronous variable-frequency drives, perform<br>the entire list of tasks related to the choice of hardware and software,<br>and use the application software package for modeling and analyzing<br>modern power supply systems common industrial mechanisms.5++43Calculation and<br>projecting of systems of<br>complexes (excavators, drilling rigs, electric locomotives, conveyors,5++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | II                        | electromechanical systems. Acquire the necessary stock of                |     |  |   |      |   |   |   |   |      |
| 43       Calculation and projecting of systems of variable electric drives of typical industrial installations and projecting of systems of systems of typical industrial installations and projecting of systems of typical industrial installations and projecting of systems of typical industrial mechanisms.       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                           | fundamental knowledge in the simulation of electric drive systems;       |     |  |   |      |   |   |   |   |      |
| 43       Calculation and projecting of systems of       The automated electric drives of typical industrial installations and complexes (excavators, drilling rigs, electric locomotives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                           | stages of installation and commissioning; system approach to the         |     |  |   |      |   |   |   |   |      |
| 43       Calculation and projecting of systems of       The automated electric drives of typical industrial installations and complexes (excavators, drilling rigs, electric locomotives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                           | installation and commissioning of electrical machines. Acquire           |     |  |   |      |   |   |   |   |      |
| 43       Calculation and projecting of systems of       The automated electric drives of typical industrial installations and complexes (excavators, drilling rigs, electric locomotives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                           | knowledge of the principles of installation, options for constructing    |     |  |   |      |   |   |   |   |      |
| 43       Calculation and projecting of systems of       The automated electric drives of typical industrial installations and complexes (excavators, drilling rigs, electric locomotives, conveyors, drilling rigs, electric locomotives, electric locomotives, electricomotives, electric locomotives, electric locomotives,                                                                                                                                           |    |                           | closed-frequency systems of variable frequency drives, calculate and     |     |  |   |      |   |   |   |   |      |
| and use the application software package for modeling and analyzing modern power supply systems common industrial mechanisms.       and use the application software package for modeling and analyzing modern power supply systems common industrial mechanisms.       and use the application software package for modeling and analyzing modern power supply systems common industrial mechanisms.       and use the application software package for modeling and analyzing modern power supply systems common industrial mechanisms.       and use the application software package for modeling and analyzing modern power supply systems common industrial installations and projecting of systems of complexes (excavators, drilling rigs, electric locomotives, conveyors, and the projecting of systems of t                                                                                                                                                             |    |                           | simulate systems of asynchronous variable-frequency drives, perform      |     |  |   |      |   |   |   |   |      |
| 43       Calculation and projecting of systems of complexes (excavators, drilling rigs, electric locomotives, conveyors,       5       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                           | the entire list of tasks related to the choice of hardware and software, |     |  |   |      |   |   |   |   |      |
| 43 Calculation and projecting of systems of complexes (excavators, drilling rigs, electric locomotives, conveyors,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                           | and use the application software package for modeling and analyzing      |     |  |   |      |   |   |   |   |      |
| projecting of systems of complexes (excavators, drilling rigs, electric locomotives, conveyors,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L  |                           | modern power supply systems common industrial mechanisms.                |     |  |   |      |   |   |   |   |      |
| projecting of systems of complexes (excavators, drilling rigs, electric locomotives, conveyors,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43 | Calculation and           | The automated electric drives of typical industrial installations and    | 5   |  | + |      | + |   |   | ĺ |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | projecting of systems of  |                                                                          |     |  |   |      |   |   |   |   |      |
| automated electrical fans, pumps, compressors and lifting installations) are considered. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | automated electrical      | fans, pumps, compressors and lifting installations) are considered. The  |     |  |   |      |   |   |   |   |      |
| drive main issues of the electric drive, the conditions of its operation are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | drive                     | main issues of the electric drive, the conditions of its operation are   |     |  |   |      |   |   |   |   |      |
| stated. For the working machine in question, the operating modes are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                           | stated. For the working machine in question, the operating modes are     |     |  |   |      |   |   |   |   |      |
| given and the requirements for its electric drive are specified. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| possible schemes of the electric drive and ways of its automation for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                           | possible schemes of the electric drive and ways of its automation for    |     |  |   |      |   |   |   |   |      |
| realization of the requirements presented to them are given. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                           |                                                                          |     |  |   |      |   |   |   |   |      |
| technique of calculation and selection of the basic elements of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                           | technique of calculation and selection of the basic elements of the      |     |  |   |      |   |   |   |   |      |
| electric drive, and also their typical schemes are described.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                           | electric drive, and also their typical schemes are described.            |     |  |   |      |   |   |   |   |      |

|    |                             |                                                                              | 1  | , , , , , , , , , , , , , , , , , , , | <br>n | 1 |   |   | 1 | , i |   |  |
|----|-----------------------------|------------------------------------------------------------------------------|----|---------------------------------------|-------|---|---|---|---|-----|---|--|
| 44 |                             | Basic concepts of lighting equipment. Sources of light. Electric             | 6  |                                       |       |   | + |   | + |     |   |  |
|    | lighting                    | lighting. Light technical characteristics of lighting fixtures.              |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | Normalization and the device of illumination. Calculation of electric        |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | lighting. Methods of illumination. Selection of light source and             |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | lighting device. Placement of lighting fixtures. Calculation of the          |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | number of fixtures. Choice of voltage and power scheme of lighting           |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | installations. The choice of the brand of wires and the way they are         |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | laid.                                                                        |    |                                       |       |   |   |   |   |     |   |  |
| 45 | Thermal machines and        | Students in the course of studying the discipline should acquire the         | 6  |                                       |       |   |   | + |   |     | + |  |
|    | GTU                         | knowledge and skills necessary for a free orientation in the practice of     |    |                                       |       |   |   | • |   |     |   |  |
|    |                             | operating superchargers in production. The main cycles of heat               |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | engines are considered - Carnot, Renkin, Brighton, etc. The main             |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | attention is paid to the production of energy based on gas turbines.         |    |                                       |       |   |   |   |   |     |   |  |
| 46 | Calculation and Design      | Considers the processes of heat and mass transfer in the apparatus and       | 5  |                                       |       |   |   |   |   | +   | + |  |
|    | of Heat Exchange            | installations of heat and power engineering. These include boiler            |    |                                       |       |   |   |   |   | •   |   |  |
|    | Equipment                   | installations, waste heat boilers, heat exchangers of various pressures.     |    |                                       |       |   |   |   |   |     |   |  |
|    | 1 1                         | We consider the design and methods of calculation of recuperative and        | l  |                                       |       |   |   |   |   |     |   |  |
|    |                             | regenerative heat exchangers, deaerators, evaporation and                    |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | crystallization plants, drying plants, distillation and distillation plants, |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | absorption and adsorption apparatus.                                         |    |                                       |       |   |   |   |   |     |   |  |
| 47 | Steam-gas and gas-          | The fundamentals and types of steam and gas turbines are considered,         | 5  |                                       |       |   | + |   | + |     |   |  |
|    | turbine facilities for heat | which are used in the field of power engineering, structure and thermal      |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | schemes, additional devices and equipment of thermal power plants            |    |                                       |       |   |   |   |   |     |   |  |
|    | · ·                         | and nuclear power plants, as well as the use and ways of increasing the      | 5  |                                       |       |   |   |   |   |     |   |  |
|    |                             | efficiency, operating modes, variable operating modes of modern              |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | steam and gas turbines.                                                      |    |                                       |       |   |   |   |   |     |   |  |
| 48 | Technology of               | Technological scheme of a steam boiler. Combined power plants.               | 5  |                                       |       |   |   | + | + |     |   |  |
|    |                             | Technical characteristics of fuels and the efficiency of their use in the    |    |                                       |       |   |   | • | • |     |   |  |
|    | potential steam in TPP      | boiler. Combustion of gaseous, liquid fuel. The gorenje of a                 |    |                                       |       |   |   |   |   |     |   |  |
|    | * ··· -                     | pulverized coal torch in the furnaces of steam generators. Heat              |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | exchange in boiler units. Thermal calculation and layout of steam            |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | boilers. The design of steam boilers. Energy steam boilers.                  |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | Hydrodynamics of closed, open hydraulic systems. Environmental               |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | problems of fuel combustion                                                  |    |                                       |       |   |   |   |   |     |   |  |
| 49 | boiler plants and steam     | Bailer plants and steam generators course consists of several parts:         | 4  |                                       |       |   |   |   |   | 1   |   |  |
|    | generators                  | Technological scheme of the boiler, Technical characteristics of the         | l' |                                       |       |   |   |   |   | Ŧ   |   |  |
|    | Scherators                  | fuels and the use of the boiler efficiency, Calculation of the heat of the   |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | heating boiler, The structures of the boilers, Calculation of boiler         |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | plants hydraulic and aerodynamic, Boilers of industrial and                  |    |                                       |       |   |   |   |   |     |   |  |
|    |                             | technological systems, Use boilers of industrial enterprises.                |    |                                       |       |   |   |   |   |     |   |  |
|    |                             |                                                                              | 1  |                                       |       |   |   |   |   |     |   |  |

| 50  | T 1 / 1 1 1              |                                                                            | F | 1 1 |     |   | 1 |   |   |   |   |  | l I |  |
|-----|--------------------------|----------------------------------------------------------------------------|---|-----|-----|---|---|---|---|---|---|--|-----|--|
| 50  | Industrial and domestic  | Technological scheme of the boiler, Technical characteristics of the       | 5 |     |     |   | 1 |   |   | + | + |  |     |  |
|     | heat and power           | fuels and the use of the boiler efficiency, Calculation of the heat of the |   |     |     |   |   |   |   |   |   |  |     |  |
|     | equipment                | heating boiler, The structures of the boilers, Calculation of boiler       |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | plants hydraulic and aerodynamic, Boilers of industrial and                |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | technological systems, Use boilers of industrial enterprises.              |   |     |     |   |   |   |   |   |   |  |     |  |
| 51  | Blowers and temple       | Considers pumps, compressors, the principle of their work, as well as      | 5 |     |     | + |   |   | + |   |   |  |     |  |
|     | engines                  | the work of heat engines, which include gas and steam turbines. As         |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | part of the course, students become familiar with the principles of their  |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | work and methods for calculating them, the working conditions of the       |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | main elements of superchargers and heat engines, the principles of         |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | designing superchargers and heat engines, technologies for                 |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | manufacturing machine parts, structures for controlling the operation      |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | of superchargers and heat engines.                                         |   |     |     |   |   |   |   |   |   |  |     |  |
| 52  | Engineering design of    | THE PURPOSE AND OBJECTIVE OF THE COURSE Training of a                      | 5 |     | +   | Ì |   |   |   |   |   |  |     |  |
|     | electrical connection    | highly qualified specialist capable of performing the main tasks           |   |     | · · |   |   |   |   |   |   |  |     |  |
|     | diagrams of power        | related to reliable and economical generation of electrical energy with    |   |     |     |   |   |   |   |   |   |  |     |  |
|     | plants and substations   | its standardized quality, reliability and efficiency. BRIEF                |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | DESCRIPTION OF THE COURSE Methods of calculation of the                    |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | electrical part of power plants, calculation and selection of              |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | communication transformers, calculations of short-circuit current,         |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | drawing up diagrams of connections of stations, own needs and              |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | substations, circuits of a switchgear, studying issues related to the      |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | choice of electrical equipment of substations. KNOWLEDGE,                  |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | SKILLS, AND SKILLS AT THE END OF THE COURSE -                              |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | mastering the choice of transformers; - the ability to develop the main    |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | wiring diagrams and routines; satisfying reliable transmission of          |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | electricity, providing high-quality voltage at electric energy receivers.  |   |     |     |   |   |   |   |   |   |  |     |  |
| 53  | Calculation and          | The basic definitions. Selecting the nominal voltage. Selection of wire    | 5 |     |     |   | 4 |   |   | İ | + |  |     |  |
| _   | projecting of electrical | sizes. Making power lines equivalent circuit for the calculation of the    |   |     |     |   | 1 |   |   |   |   |  |     |  |
|     | power networks and       | steady state and the definition of its parameters. Selection of            |   |     |     |   |   |   |   |   |   |  |     |  |
|     | systems                  | substation transformers. transformer parameters. Losses in                 |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | transformers. Calculations and analysis of modes of closed and open        |   |     |     |   | 1 |   |   |   |   |  |     |  |
|     |                          | electrical networks. Technical and economic calculations in electric       |   |     |     |   | 1 |   |   |   |   |  |     |  |
|     |                          | networks of power. Mechanical calculation of wires and cables.             |   |     |     |   |   |   |   |   |   |  |     |  |
|     |                          | Choosing supports, spans.                                                  |   |     |     |   |   |   |   |   |   |  |     |  |
| 54  | Electric power networks  | Basic definitions. Electrical and power systems, electrical networks.      | 5 |     |     |   |   | + |   |   | + |  |     |  |
| 5-1 | and systems              | Elements and construction of electrical networks. Elements and             |   |     |     |   |   | - |   |   | - |  |     |  |
|     |                          | constructions of electrical networks. Practical methods of calculation     |   |     |     |   | 1 |   |   |   |   |  |     |  |
|     |                          | of the established modes of electric networks and systems.                 |   |     |     |   | 1 |   |   |   |   |  |     |  |
|     |                          | Determination of capacity and energy losses in the elements of the         |   |     |     |   | 1 |   |   |   |   |  |     |  |
|     |                          | potermination of capacity and chergy losses in the ciefficity of the       |   |     |     |   |   |   |   | I |   |  |     |  |

|    |                                                                       | electrical systems. Calculation of network dual feed at different<br>voltages, power supplies of electricity and transmission quality.<br>Setting voltage regulation in electric networks. How to change the<br>control voltage power systems.                                                                                                                                                                                                                                                                                                                                                                                 |   |  |   |   |   |   |   |  |
|----|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|---|---|---|---|---|--|
| 55 | Calculation and<br>projecting of power<br>supply systems              | The methods of calculation of electrical loads, reactive power<br>compensation calculation, charting shop and in-plant networks, study<br>issues related to the calculation of consumer power supply with a<br>specific load.                                                                                                                                                                                                                                                                                                                                                                                                  | 5 |  | + | + |   |   |   |  |
| 56 | Engineering design of<br>electrical machines in<br>the power industry | Study of methods of calculation, design and optimization analysis,<br>development of skills for independent solution of engineering<br>problems and the practical application of theoretical knowledge                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 |  | + |   | + |   |   |  |
| 57 | Power and<br>electrotechnical<br>equimpment                           | The acquisition of students knowledge of the basics and trends in the development of energy and electrical equipment. Clearly understand the concept of providing consumers with electricity, understand the structure of energy and electrical equipment systems, the relationship between its various links, get an idea of the composition of electricity consumers in various sectors of the economy. Questions on the generalized electromechanical converter are considered. The device and principles of construction of electromechanic systems. Laws of electromechanics. Electrical insulation and cable technology. | 4 |  |   |   | + |   |   |  |
| 58 | Relay protection of<br>power systems                                  | Expansion of views on the possibilities of relay protection; Fixing and concretization of theoretical material concerning the principles of operation and the device of relay protection, their basic properties, application techniques; Gaining the skills of calculating the parameters necessary for configuring relay protection; The correct choice of methods and means of relay protection; Evaluation of the efficiency and reliability of the selected relay protection.                                                                                                                                             |   |  | + |   |   | + |   |  |
| 59 | Energy accumulation<br>systems                                        | All the main energy storage systems are considered, from gigantic and capital-intensive pumped storage stations, which in their idea are most suitable for joint use with renewable energy sources, to compact electrochemical systems of all basic types, including used and promising modifications of lithium batteries, fuel cells, redox accumulators and modern supercapacitors.                                                                                                                                                                                                                                         | 5 |  |   |   |   |   | + |  |



- 1

#### NJSC "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after Kel, SATEAEV



APPROVED

2024.

M.M. Begentaev

# CURRICULUM of Educational Program on enrollment for 2024-2025 academic year

# Educational program 6B07101 - "Power Engineering" Group of educational programs B062 Electrical and Power Engineering

|                    | Form of study: full-time                                                        | Duration o | f study: 4 ye       | ars       |                         |                   | ,            | Acade         | mic degree:   |               |               |               |               | d competer    |              |
|--------------------|---------------------------------------------------------------------------------|------------|---------------------|-----------|-------------------------|-------------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|
|                    |                                                                                 |            |                     |           |                         |                   |              |               | Allocation    | -             |               | ng based on   |               |               |              |
| <b>B</b>           |                                                                                 |            | Total<br>amount in  | Total     | classroom               | SIS<br>(including | Form of      | I co          | ourse         | II c          | ourse         | III c         | ourse         | IVC           | ourse        |
| Discipline<br>code | Name of disciplines                                                             | Cycle      | Academic<br>credits | 1         | volume of<br>lek/lab/pr | TSIS) in          | control      | 1<br>semester | 2<br>semester | 3<br>semester | 4<br>semester | 5<br>semester | 6<br>semester | 7<br>semester | 8<br>semeste |
| CYCLE OF G         | ENERAL EDUCATION DISCIPLIN                                                      | NES (GED)  |                     |           | Mal                     | Module of In      | nguage trait | ning          |               |               |               |               |               |               |              |
| LNG 108            | Paulish language                                                                | GED,       | 5                   | 150       | 0/0/3                   | 105               | E            | 5             |               |               |               |               |               |               |              |
| LING 108           | English language                                                                | RC<br>GED, |                     |           |                         |                   |              |               | 5             |               |               |               |               |               |              |
| LNG 108            | English language                                                                | RC         | 5                   | 150       | 0/0/3                   | 105               | E            |               | ,             |               |               |               |               |               |              |
| LNG 104            | Kazakh (Russian) language                                                       | GED,<br>RC | 5                   | 150       | 0/0/3                   | 105               | E            | 5             |               |               |               |               |               |               |              |
| LNG 104            | Kazakh (Russian) language                                                       | GED,<br>RC | 5                   | 150       | 0/0/3                   | 105               | Е            |               | 5             |               |               |               |               |               |              |
|                    |                                                                                 |            |                     |           | M-2.                    | Module of pl      | ysical train | ing           |               |               |               |               |               |               |              |
| KFK 101-104        | 4 Physical Culture                                                              | GED,<br>RC | 8                   | 240       | 0/0/8                   | 120               | Difcredit    | 2             | 2             | 2             | 2             |               |               |               |              |
|                    |                                                                                 | KC         |                     |           | M-3. Mo                 | dule of infor     | nation tech  | nology        |               |               |               |               |               |               |              |
| CSE 677            | Information and communication                                                   | GED,       | 5                   | 150       | 2/1/0                   | 105               | Е            |               |               |               | 5             |               |               |               |              |
| CSE 077            | technologies (in English)                                                       | RC         |                     |           |                         |                   |              |               |               |               |               |               |               |               |              |
|                    |                                                                                 | GED,       |                     |           |                         | ule of socio-cu   |              | lopment       | 5             |               |               |               |               |               |              |
| HUM 137            | History of Kazakhstan                                                           | RC         | 5                   | 150       | 1/0/2                   | 105               | SE           |               | 5             | -             |               |               |               |               |              |
| HUM 132            | Philosophy                                                                      | GED,<br>RC | 5                   | 150       | 1/0/2                   | 105               | Е            |               |               |               | 5             |               |               |               |              |
| HUM 120            | Socio-political knowledge<br>module (sociology, politology)                     | GED,<br>RC | 3                   | 90        | 1/0/1                   | 60                | Е            |               |               |               | 3             |               |               |               |              |
| HUM 134            | Socio-political knowledge<br>module (culturology,                               | GED,<br>RC | 5                   | 150       | 2/0/1                   | 105               | E            |               |               | 5             |               |               |               |               |              |
|                    | psychology)                                                                     |            | M                   | I-5. Modu | le of anti-co           | rruption cult     | ure, ecology | and life safe | ty base       |               |               |               |               |               |              |
| HUM 136            | Fundamentals of Anti-                                                           |            |                     |           |                         |                   |              |               |               |               |               |               |               |               |              |
| MNG 489            | Corruption Culture and Law<br>Fundamentals of Economics and<br>Entrepreneurship | GED,       | 5                   | 150       | 2/0/1                   | 105               | Е            |               |               |               | 5             |               |               |               |              |
| MSM500<br>CHE 656  | Scientific research methods<br>Ecology and life safety                          | ССН        |                     |           |                         |                   |              |               |               |               |               |               |               |               |              |
| MNG564             | Basics of Financial Literacy<br>SIC DISCIPLINES (BD)                            |            |                     |           |                         |                   |              |               |               |               |               |               |               |               |              |
|                    |                                                                                 | <b>PD</b>  |                     |           |                         | physical and      |              |               |               |               |               |               |               |               |              |
| MAT 101            | Mathematics I                                                                   | BD,<br>UC  | 5                   | 150       | 1/0/2                   | 105               | E            | 5             |               |               |               |               |               |               |              |
| PHY 111            | Physics I                                                                       | BD,<br>UC  | 5                   | 150       | 1/1/1                   | 105               | E            | 5             |               |               |               |               |               |               |              |
| PHY 112            | Physics II                                                                      | BD,<br>UC  | 5                   | 150       | 1/1/1                   | 105               | Е            |               | 5             |               |               |               |               |               |              |
| MAT 102            | Mathematics II                                                                  | BD,<br>UC  | 5                   | 150       | 1/0/2                   | 105               | Е            |               | 5             |               |               |               |               |               |              |
| MAT103             | Mathematics III                                                                 | BD,<br>UC  | 5                   | 150       | 1/0/2                   | 105               | Е            |               |               | 5             |               |               |               |               |              |
|                    |                                                                                 | BD,        |                     |           |                         | ing of specia     |              |               | gineering     |               |               |               |               |               |              |
| ERG158             | Reading electrical circuits                                                     | UC         | 5                   | 150       | 1/0/2                   | 105               | E            | 5             |               |               |               |               |               |               |              |
| ERG 556            | Introduction to specialty                                                       | BD,<br>UC  | 4                   | 120       | 2/0/1                   | 75                | E            | 4             |               |               |               |               |               |               |              |
|                    | Electrical and technical material scince                                        | BD.<br>UC  | 5                   | 150       | 2/0/1                   | 105               | Е            |               |               | 5             |               |               |               |               |              |
| FLCCM              | Theoretical Foundations of<br>Electrical Engineering I                          | BD.<br>UC  | 5                   | 150       | 2/1/0                   | 105               | E            |               |               | 5             |               |               |               |               |              |
| EPC506             | Theoretical fundamentals of heat engineering                                    | BD,<br>UC  | 6                   | 180       | 2/0/2                   | 120               | E            |               |               | 6             |               |               |               |               |              |
|                    | Elective                                                                        | BD,<br>CCH | 5                   | 150       | 2/1/0                   | 105               | E            |               |               |               | 5             |               |               |               |              |
|                    | Theoretical Foundations of<br>Electrical Engineering II                         | BD,<br>UC  | 5                   | 150       | 2/1/0                   | 105               | E            |               |               |               | 5             |               |               |               |              |
|                    | Industrial electronics                                                          | BD,<br>UC  | 5                   | 150       | 1/1/1                   | 105               | E            |               |               |               |               | 5             |               |               |              |
|                    | Electric devices                                                                | BD,<br>UC  | 5                   | 150       | 2/1/0                   | 105               | E            |               |               |               |               | 5             |               |               |              |
| ERG526             |                                                                                 |            | 1                   |           |                         |                   |              |               |               |               |               |               |               |               |              |
|                    | Engineering Thermodynamics                                                      | BD,<br>UC  | 5                   | 150       | 2/0/1                   | 105               | E            |               |               |               |               | 5             |               |               |              |

|            |                                                                                              | BD,         |     | 1      | 1            | ,              |              |             |          |    |          |         |         |      |         |
|------------|----------------------------------------------------------------------------------------------|-------------|-----|--------|--------------|----------------|--------------|-------------|----------|----|----------|---------|---------|------|---------|
| ERG530     | Power supply of enterprises                                                                  | UC          | 5   | 150    | 1/1/1        | 105            | E            |             |          |    |          |         | 5       |      |         |
| 3205       | Elective                                                                                     | BD,<br>CCH  | 5   | 150    | 2/0/1        | 105            | E            |             |          |    |          |         | -       | 5    | -       |
| 3206       | Elective                                                                                     | BD,<br>CCH  | 5   | 150    | 2/0/1        | 105            | Е            |             |          |    |          |         | 5       |      | -       |
| 3207       | Elective                                                                                     | BD.<br>CCH  | 6   | 180    | 2/1/1        | 120            | E            |             |          |    |          |         |         | 6    |         |
| 3208       | Elective                                                                                     | BD.<br>CCH  | 5   | 150    | 2/0/1        | 105            | E            |             |          |    |          |         | 5       |      | 1       |
| 3209       | Elective                                                                                     | BD.<br>CCH  | 5   | 150    | 2/0/1        | 105            | E            |             |          |    |          |         |         | 5    | 1       |
| AAP173     | Educational practice                                                                         | BD.<br>UC   | 2   |        |              |                |              |             | 2        |    |          |         |         |      |         |
| YCLE OF PR | ROFILE DISCIPLINES (PD)                                                                      |             |     |        |              |                | 1            |             |          |    |          |         |         |      | 1       |
|            | Laboratory workshop on                                                                       |             |     | M-8, N | lodule of pr | ofessional dis | sciplines in | power engin | eering   |    |          |         |         | ,    | -       |
| ERG504     | modern industrial technologies<br>in the electric power industry 1                           | PD,<br>UC   | 5   | 150    | 0/3/0        | 105            | E            |             |          |    |          | 5       |         |      |         |
| ERG527     | Electrical machines                                                                          | PD,<br>UC   | 5   | 150    | 2/1/0        | 105            | E            |             |          |    |          | 5       |         |      |         |
| ERG671     | Renewable energy                                                                             | PD,<br>UC   | 6   | 180    | 2/0/2        | 120            | Е            |             |          |    |          |         |         | 6    |         |
| ERG562     | Laboratory workshop on<br>modem industrial technologies<br>in the electric power industry II | PD,<br>UC   | 4   | 120    | 0/3/0        | 75             | E            |             |          |    |          |         | 4       |      |         |
| ERG571     | Accumulation of electric and thermal energy                                                  | PD,<br>UC   | 4   | 120    | 2/0/1        | 75             | E            |             |          |    |          |         |         | 4    |         |
| 3305       | Elective                                                                                     | PD,<br>CCH  | 5   | 150    | 1/1/1        | 105            | E            |             |          |    |          |         | 5       |      |         |
| 3306       | Elective                                                                                     | PD,<br>CCH  | 4   | 150    | 2/0/1        | 105            | E            |             |          |    |          |         | 4       |      |         |
| 4302       | Elective                                                                                     | PD,<br>CCH  | 6   | 150    | 2/0/2        | 105            | E            |             |          |    |          |         |         | 6    |         |
| 4303       | Elective                                                                                     | PD,<br>CCII | 5   | 150    | 2/0/1        | 105            | E            |             |          |    |          |         |         | 5    |         |
| 4304       | Elective                                                                                     | PD,<br>CCH  | 5   | 150    | 1/1/1        | 105            | E            |             |          |    |          |         |         |      | 5       |
| 4305       | Elective                                                                                     | PD.<br>CCH  | 5   | 150    | 2/0/1        | 105            | E            |             |          |    |          |         |         |      | 5       |
| 4306       | Elective                                                                                     | PD,<br>CCH  | 5   | 150    | 1/0/2        | 105            | E            |             |          |    |          |         |         |      | 5       |
| AAP102     | Production practice I                                                                        | PD,<br>UC   | 2   |        |              |                |              |             |          |    | 2        |         |         |      |         |
| AAP183     | Production practice II                                                                       | PD,<br>UC   | 3   |        | MA           | Module of fi   |              |             |          |    |          |         | 3       |      |         |
| ECA109     | Writing and defense of the thesis / project                                                  | FA          | 8   |        | M-9.         | module of fi   | um attestat  |             |          |    |          |         |         |      | 8       |
|            |                                                                                              |             |     |        | M-10. Mod    | ule of additio | nal types o  | f training  |          |    |          |         |         |      |         |
| AAP500     | Military affairs                                                                             | ATT         | . 0 |        |              |                |              |             |          |    |          |         |         |      |         |
|            | Total based on UNIVERSITY:                                                                   |             |     |        |              |                |              | 31          | 29<br>50 | 28 | 32<br>60 | 29<br>6 | 31<br>0 | 37 6 | 23<br>0 |
|            |                                                                                              |             |     |        |              |                |              |             |          |    |          | -       |         |      |         |

|            | Number of credits for the entire       | eriod of stud                 | y                               |                              |       |  |  |  |
|------------|----------------------------------------|-------------------------------|---------------------------------|------------------------------|-------|--|--|--|
|            |                                        | Credits                       |                                 |                              |       |  |  |  |
| Cycle code | Cycles of disciplines                  | required<br>component<br>(RC) | university<br>component<br>(UC) | component of<br>choice (CCH) | Total |  |  |  |
| GED        | Cycle of general education disciplines | 51                            |                                 | 5                            | 56    |  |  |  |
| BD         | Cycle of basic disciplines             |                               | 81                              | 31                           | 112   |  |  |  |
| PD         | Cycle of profile disciplines           |                               | 29                              | 35                           | 64    |  |  |  |
|            | Total for theoretical training:        | 51                            | 110                             | 71                           | 232   |  |  |  |
| FA         | Final attestation                      | 8                             |                                 |                              | 8     |  |  |  |
|            | TOTAL;                                 | 59                            | 110                             | 71                           | 240   |  |  |  |

Decision of the Academic Council of Kazntu named after K.Satpayev, Protocol Nr <u>12</u> "<u>21</u>" <u>D4</u> 20<u>211</u> y. Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev, Protocol Nr <u>6</u>" <u>11</u>" <u>011</u> 20<u>211</u> y.

Decision of the Academic Council of the Institute of Energy and Mechanical Engineering. Protocol Na 4 "\_\_\_\_\_ 01\_\_ 20\_\_\_\_ y.

| Vice-Rector for Academic Affairs                           | Herry | R.K. Uskenbayeva  |
|------------------------------------------------------------|-------|-------------------|
| Director Institute of Energy and Mechanical<br>Engineering |       | K.K. Yelemessov   |
| Department Head «Power Engineering»                        | G 1   | Ye.A. Sarsenbayev |
| Specialty Council representative from<br>employers         | Aburt | G.E. Abdykalykov  |



# KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.LSATTATE WITCHING

Director Institute the Energy and Mechanics Ingincering

41

c year

ASSERT

ELECTIVE DISCIPLINES of the educational program on enrollment for the 2024-2025 acutem Educational program 6B07101 - "Power Engineering"

Group of educational programs B062 Electrical and Power Engineering

|                  | Form of study: full                             | -time              | Duration of study: 4 years Academ                                                                             | ic degree: B | achelor of Er      | ngineering a | nd Techn       | ology      |                                        |
|------------------|-------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|--------------|--------------------|--------------|----------------|------------|----------------------------------------|
| Year of<br>study | Elective code<br>according to the<br>curriculum | Discipline<br>code | Name of disciplines                                                                                           | Semester     | Cycle              | Credits      | Total<br>hours | lek/lab/pr | SIS<br>(including<br>TSIS) in<br>hours |
|                  |                                                 |                    | Module of basic training of special disciplin                                                                 | nes in power | engineering        | r            |                |            |                                        |
|                  | 2211                                            | ERG110             | Information and measuring technics                                                                            |              |                    |              |                | 2/1/0      |                                        |
|                  |                                                 | ERG401             | Energy conversation in heat power and heat engineering                                                        | 4            | BD, CCH            | 5            | 150            | 1/1/1      | 105                                    |
|                  | 3205                                            | ERG441             | Electrical insulation and cable equipment                                                                     | 7            | BD, CCH            | 5            |                | 2/0/1      |                                        |
|                  |                                                 | MNG563             | Fundamentals of sustainable development and ESG projects in Kazakhstan                                        |              |                    |              | 150            |            | 105                                    |
|                  | 2200                                            | ERG521             | Heat and mass transfer equipment in heat power engineering                                                    |              | BD, CCH<br>BD, CCH | E            | 150            | 2/0/1      | 105                                    |
|                  | 3206                                            | ERG528             | Electrotechnical and thermotechnical measurements                                                             | 6            |                    | 5            | 150            | 2/1/0      |                                        |
| 1                |                                                 | MNG562             | Legal regulation of intellectual property                                                                     | 1            |                    |              |                | 2/0/1      |                                        |
|                  |                                                 | ERG447             | Automated electric drive                                                                                      | -            |                    |              |                | 2/1/1      |                                        |
|                  | 3207                                            | ERG601             | Electrical part of power stations                                                                             | 7            |                    | 6            | 180            | 2/0/2      | 120                                    |
|                  |                                                 | ERG433             | Transition processes in energy systems                                                                        |              |                    |              |                |            |                                        |
|                  | 3208                                            | ERG533             | Fundamentals of the theory of fuel combustion and the combustion device                                       | 6            | BD, CCH            | 5            | 150            | 2/0/1      | 105                                    |
|                  |                                                 | CSE831             | Fundamentals of Artificial Intelligence                                                                       | 1            |                    |              |                | 1/0/2      |                                        |
|                  | 3209                                            | ERG559             | Main Machinery Operation of Heat Power Plant                                                                  | 7            | BD, CCH            | 5            | 150            |            | 105                                    |
|                  |                                                 | MNG 533            | Theory and practice of project management                                                                     |              |                    |              |                | 2/0/1      |                                        |
|                  |                                                 | ERG560             | Modeling in power systems                                                                                     |              | 22, 221            |              |                | 1/2/0      | 105                                    |
|                  |                                                 | LICOSOU            | Module of professional disciplines in                                                                         | power engin  | eering             |              |                | 17210      |                                        |
|                  | 3305<br>3306                                    | ERG178             | Electric power networks and systems                                                                           |              |                    | 5            | 150            | 1/1/1      | 105                                    |
|                  |                                                 | ERG507             | Blowers and temple engines                                                                                    | 6            | PD, CCH            | 2            | 150            | 2/0/1      | 105                                    |
|                  |                                                 | ERG563             | Power and electrotechnical equimpment                                                                         | 6            | PD, CCH            | 4            | 120            | 2/0/1      | 75                                     |
|                  |                                                 | ERG564             | Boiler Plants and Steam Generators                                                                            | 0            | FD, CCH            | 4            | 120            | 2/0/1      | 15                                     |
|                  | 4302                                            | ERG598             | Lighting technology and lighting                                                                              | 7            | PD, CCH            | 6            | 180            | 2/0/2      | 120                                    |
|                  |                                                 | ERG599             | Thermal machines and GTU                                                                                      | ,<br>        | 10,001             |              | 100            | 2/0/2      | 120                                    |
|                  | 4304                                            | ERG595             | Relay protection of power systems                                                                             |              | PD, CCH            | 5            | 150            | 1/1/1      |                                        |
|                  |                                                 | ERG588             | Steam-gas and gas-turbine facilities for heat and nuclear power plants                                        | 8            |                    |              |                |            | 105                                    |
|                  |                                                 | ERG450             | Energy accumulation systems                                                                                   | 8            | PD, CCH            | 5            | 150            | 2/0/1      | 105                                    |
|                  |                                                 | ERG429             | Industrial and domestic heat and power equipment                                                              |              | ,                  |              |                | 2/1/0      |                                        |
| 2                | 4306                                            | ERG502             | Engineering design of electrical machines in the power industry                                               | 8            | PD, CCH            | 5            | 150            | 1/0/2      | 105                                    |
|                  |                                                 | ERG672             | Engineering design of electrical connection diagrams of power plants and substations                          |              |                    |              |                | 2/0/1      |                                        |
|                  |                                                 | ERG522             | Technology of production of high-potential steam in TPP                                                       |              |                    |              |                | 2/0/1      |                                        |
|                  |                                                 |                    | The "R&D" modul                                                                                               | e            |                    |              |                |            |                                        |
|                  | 4303                                            | ERG511<br>ERG517   | Calculation and projecting of power supply systems<br>Calculation and projecting of electrical power networks | 7            | PD, CCH            | 5            | 150            |            |                                        |
|                  |                                                 | ERG516             | and systems<br>Calculation and Design of Heat Exchange Equipment                                              |              |                    |              |                | 2/0/1      | 105                                    |
|                  |                                                 | ERG510             | Calculation and projecting of systems of automated electrical drive                                           |              |                    |              |                |            |                                        |

| Number of credits for the entire period of study |         |  |  |  |  |
|--------------------------------------------------|---------|--|--|--|--|
| Cycles of disciplines                            | Credits |  |  |  |  |
| Cycle of basic disciplines (B)                   | 31      |  |  |  |  |
| Cycle of profile disciplines (P)                 | 35      |  |  |  |  |
| Total;                                           | 66      |  |  |  |  |

Decision of the Scientific Council of the Institute Protocol № <u>4</u>" <u>I</u><u>P</u>" <u>DI</u> 20<u>24</u>

Department Head «Power Engineering»

Specialty Council representative from employers

- 4 Abref

Ye.A. Sarsenbayev G.E. Abdykalykov